期刊文献+

基于分类不确定性的伪标签目标检测算法 被引量:1

Pseudo-Label Object Detection Algorithm Based on Classification Uncertainty
下载PDF
导出
摘要 伪标签目标检测算法利用大量未标注数据生成伪标签数据来增加训练数据规模,从而提高目标检测模型的性能。针对伪标签数据中存在大量错误标注数据且伪标签目标检测模型性能难以提升的问题,提出基于SoftTeacher-CUC的伪标签目标检测算法。SoftTeacher-CUC算法在SoftTeacher伪标签目标检测算法的基础上,利用分类不确定性方法计算模型生成的伪标签分类结果的不确定性来判断伪标签是否可靠,不确定性越低说明伪标签的分类结果越可靠。在此基础上,将计算得到的不确定性作为权重加入伪标签数据的分类损失函数中,进一步减少高不确定性伪标签为模型带来的负面影响。根据Teacher模型中不同模块的作用,采用不同权重的指数滑动平均方法更新Teacher模型,降低Teacher模型和Student模型参数之间的相似性,使一致性正则化方法发挥效用。实验结果表明,在标注数据分别占训练集1%、5%和10%的情况下,与SoftTeacher算法相比,SoftTeacher-CUC算法的平均精度均值分别提高了1.4、1.2和1.7个百分点,在标注数据较少的情况下,该算法具有更好的检测效果。 The pseudo-label object detection algorithm aims to increase the training data size by using a large amount of unlabeled data to generate pseudo-label data in order to improve the performance of the object detection model. To mitigate the problem of a large amount of incorrectly labeled data in the pseudo-label data and that the performance of the pseudo-label object detection model is difficult to improve,this paper proposes a pseudo-label object detection algorithm of SoftTeacher-CUC. The SoftTeacher-CUC algorithm is based on the SoftTeacher pseudo-label object detection algorithm.First,the classification uncertainty calculation method calculates the uncertainty of the pseudo-label classification results generated by the model to determine whether the pseudo-label is reliable.The lower the uncertainty,the more reliable the pseudo-label classification results. Then,the calculated uncertainty is added as a weight to the classification loss of the pseudo-label data to further reduce the negative impact of high-uncertainty pseudo-labels on the model. Finally,according to the role of the different modules of the Teacher model,an Exponential Moving Average(EMA) method with different weights is used to update the Teacher model. It reduces the similarity between the parameters of the Teacher model and those of the Student model to enable the consistency regularization method to work.The experimental results show that the labeled data accounts for 1%,5%,and 10% of the training set.Compared with the SoftTeacher algorithm,the mAP of the SoftTeacher-CUC algorithm is improved by 1.4,1.2,and 1.7 percentage points,respectively.Consequently,SoftTeacher-CUC algorithm has a better detection effect when there is less labeled data.
作者 雷洁 饶文碧 杨焱超 熊盛武 LEI Jie;RAO Wenbi;YANG Yanchao;XIONG Shengwu(School of Computer Science and Artificial Intelligence,Wuhan University of Technology,Wuhan 430070,China;Sanya Science and Education Innovation Park,Wuhan University of Technology,Sanya,Hainan 572000,China)
出处 《计算机工程》 CAS CSCD 北大核心 2023年第1期49-56,共8页 Computer Engineering
基金 国家自然科学基金(62176194) 湖北省科技创新计划项目(2020AAA001) 武汉理工大学三亚科教创新园项目(2021KF0031)。
关键词 目标检测 伪标签 分类不确定性 指数滑动平均 分类损失函数 一致性正则化 object detection pseudo-label classification uncertainty Exponential Moving Average(EMA) classification loss function consistency regularization
  • 相关文献

参考文献2

二级参考文献10

共引文献17

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部