期刊文献+

机器学习中集成模型的应用问题研究

Research on application of integrated models in machine learning
下载PDF
导出
摘要 文章综合运用了机器学习的各种理论对糖尿病的风险预测等问题进行了深度研究与分析,主要包括:(1)采用Logistic回归算法和决策树算法构建集成模型,最终发现集成模型能够在一定程度上解决单分类模型预测结果不稳定的问题,同时也能提升预测准确率。(2)风险预测模型由集成模型构建而来,综合比较预测准确率、精确度、召回率,发现集成模型的综合效果最好。 This paper comprehensively applied various theories of machine learning to conduct in-depth research and discussion on diabetes risk prediction and other issues. Its main work is as follows:(1) Logistic regression algorithm and decision tree algorithm are used to build an integrated model. Finally, it is found that the integrated model can solve the problem of unstable prediction results of single classification model to a certain extent and improve the accuracy of prediction.(2) The risk prediction model is constructed from the integration model, and the comprehensive comparison of prediction accuracy, accuracy and recall rate shows that the integrated effect of the integration model is the best.
作者 焦嘉 刘婷 Jiao Jia;Liu Ting(Hunan College of Information,Changsha 410203,China)
出处 《无线互联科技》 2022年第21期166-168,共3页 Wireless Internet Technology
关键词 决策树 LOGISTIC回归 集成模型 糖尿病风险预测 the decision tree Logistic regression integrated model diabetes risk prediction
  • 相关文献

参考文献1

二级参考文献35

  • 1王琦,操晓春.中国计算机学会通讯[J].2015,P60-62.
  • 2WarrenS McCulloch and Walter Pitts. A logical calculus of the ideas immanentin nervous activity. The bulletin of mathematical biophysics, 1943,5 (4) :115 -133.
  • 3Hopfield J J. Neural Networks and Physical Sys- tems with Emergent Collective Computational Abil- ities, Proc Natl Aead Sci. USA, 1982, (79) : 2254 - 2558.
  • 4E Rumelhart, G E Hinton, R J Williams. Learn- ng internal representations by error propagation. ature , 1986,323 (99) :533 - 536.
  • 5http://deepleaming, stanford, edu/wiki/index. php/UFLDL_Tutorial.
  • 6http://blog, csdn. net/datoubo/article/details/ 8577366.
  • 7Geoffery E Hinton, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006,313 (5786) :504 - 7.
  • 8http://www, ccf. org. cn/sites/ccf/xhdtnry, jsp? contentId = 2873667830199.
  • 9http://tech. 163. com/16/0229/07/BGVMTL- GA000915BF. html.
  • 10http://nkonst, corn/machine - learning - ex- plained - simple - words/.

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部