期刊文献+

Fabrication of extreme wettability surface for controllable droplet manipulation over a wide temperature range 被引量:5

下载PDF
导出
摘要 Droplet controllable manipulation over a wide temperature range has promising applications in microelectronic heat dissipation, inkjet printing, and high temperature microfluidic system. However, the fabrication of a platform for controllable droplet manipulation using the methods commonly used in industry remains a tremendously challenge. The popular method of controlling droplets is highly dependent on external energy input and has relatively poor controllability in terms of droplet motion behaviors and manipulation environment, such as distance, velocity, direction and a wide temperature range. Here, we report a facile and industrially applicable method for preparing Al superhydrophobic (S-phobic) surfaces, which enables controlled droplet bouncing, evaporation, and transport over a wide temperature range. Systematic mechanistic studies are also investigated. Extreme wettability surfaces were prepared on Al substrate by a composite process of electrochemical mask etching and micro-milling. To investigate the evaporation process and thermal coupling characteristics, controlled evaporation and controlled bouncing of droplet in a wide temperature range were conducted. Based on the evaporation regulation and bouncing mechanism of droplets on an extreme wettability surface, by using Laplace pressure gradients and temperature gradients, we realized controlled transport of droplets with confluence, split-flow, and gravity-resistant transport over a wide temperature range, offering a potential platform for a series of applications, such as new drug candidates and water collection.
出处 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期246-259,共14页 极端制造(英文)
基金 supported by the National Key R&D Program of China(Grant No.2017YFE0116900) the National Natural Science Foundation of China(NSFC,Grant Nos.52275420 and 52130503) the Science and Technology Planning Project of Hunan Province(Grant No.2020WK2011) Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200409).
  • 相关文献

同被引文献27

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部