摘要
船舶等海洋工程装备其舱内具有设备众多、空间受限和结构复杂等特点,传统人工巡检不能解决安全和效率的问题。针对这些问题,结合仿生技术,采用负压吸附和电磁吸附两种吸附方式,设计一种船舱检测的多模式攀爬机器人,该机器人能够在狭小空间运动,并且能够适应不同材质的壁面。基于改进的D-H参数法建立机器人运动学模型,进行运动学正解、逆解的计算;分析机器人运动步态,对比传统的步态控制方法,提出基于Hopf振荡器的机器人步态规划策略;搭建样机控制平台,进行步态控制对比测试。实验结果验证了多模式船舱检测机器人的步态规划的稳定性,为船舶等海工装备新形态检测机器人的研究拓展了新的思路。
The cabin of ships and other marine engineering equipment is characterized by numerous equipment,restricted space and complex structure.Traditional manual inspection cannot overcome the problems of safety and efficiency.To solve these problems,the climbing mechanism of organisms such as inchworm was studied,and a multi-mode climbing robot for cabin inspection was designed by using negative pressure adsorption and electromagnetic adsorption in combination with bionic technology.The robot could move in small spaces and adapt to walls with different materials.A kinematics model of the robot was established based on modified D-H parameters,and the forward and inverse solutions of robot kinematics were solved.Compared with traditional gait control methods,a gait planning strategy based on Hopf oscillator was proposed with the gait analysis.Then,a prototype robot control platform was built,and a gait control comparison test was conducted to verify the stability of the gait planning of the multi-mode cabin inspection robot.The research expands a new idea for the research of new form inspection robot of marine engineering equipment such as ships.
作者
眭翔
周瑞吉
徐林森
刘进福
龙杰
李泽林
SUI Xiang;ZHOU Ruiji;XU Linsen;LIU Jinfu;LONG Jie;LI Zelin(Science Island Branch,Graduate School,University of Science and Technology of China,Hefei Anhui 230031,China;Changzhou City Lab of Intelligent Technology for Advanced Manufacturing Equipment,Changzhou College of Information Technology,Changzhou Jiangsu 213164,China;Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei Anhui 230031,China;College of Mechanical and Electrical Engineering,Hohai University,Changzhou Jiangsu 213022,China;School of Intelligent Control,Changzhou Vocational Institute of Industry Technology,Changzhou Jiangsu 213164,China)
出处
《机床与液压》
北大核心
2022年第24期37-44,共8页
Machine Tool & Hydraulics
基金
中央高校基本科研业务费项目(B220201025)
江苏省高等学校自然科学面上项目(21KJB460006)
江苏省前沿引领技术基础研究专项项目(BK20192004)
江苏高校青蓝工程优秀教学团队资助项目
苏州市重点产业技术创新-前瞻性应用研究项目(SYG202143)
常州信息职业技术学院2018年度校级科研平台(KYPT201801G)。