期刊文献+

基于自组织特征映射网络的采煤机故障诊断

Fault Diagnosis of Shearer based on Self-organizing Feature Mapping Network
下载PDF
导出
摘要 针对采煤机日常运行中各类故障难以诊断的问题,以MG300/700-WD型交流电牵引采煤机为研究对象,通过提取采煤机的故障特征信息,并结合相关样本数据,提出了一种基于自组织特征映射(SOM)网络的采煤机故障诊断模型。经Matlab仿真测试,采用SOM网络进行采煤机故障诊断具有一定的可行性和实用性。 Aiming at the problem that it is difficult to diagnose all kinds of faults in the daily operation of shearer, taking the MG300/700-WD type AC electric haulage shearer as the research object, by extracting the fault feature information of shearer and combining with relevant sample data, a shearer fault diagnosis model based on self-organizing feature map(SOM) network is proposed. Through the Matlab simulation test, it is feasible and practical to use SOM network to diagnose the fault of shearer.
作者 常莹莹 林园园 徐彤 Chang Yingying;Lin Yuanyuan;Xu Tong(College of Science and Arts,Jiangsu Normal University,Jiangsu Xuzhou 221132)
出处 《山东煤炭科技》 2022年第12期187-189,192,共4页 Shandong Coal Science and Technology
关键词 自组织特征映射 采煤机 故障诊断 故障特征 self-organizing feature mapping shearer fault diagnosis fault characteristics
  • 相关文献

参考文献2

二级参考文献9

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部