期刊文献+

基于双高斯模型的锂电池剩余使用寿命预测方法 被引量:7

Lithium-ion Battery RUL Prediction Method Based on Double Gaussian Model
下载PDF
导出
摘要 准确的剩余使用寿命预测对锂离子电池的性能最大化和维护是至关重要的。为了对锂离子电池的剩余使用寿命进行精准预测,提出一种新颖的双高斯模型用于描述锂离子电池老化过程。首先对常用的几种电池容量衰减经验模型进行分析与评价,并提出性能更优的双高斯模型。随后,基于历史容量数据,利用粒子滤波(Particle filter,PF)技术建立双高斯老化模型,同时引入拟合相关系数与均方根误差评估模型。最后,根据实验室的单体电池老化数据和美国国家航空航天局的电池老化数据,进行剩余使用寿命预测试验,以验证所提出的老化模型的有效性。试验结果表明,所提出的老化模型可以准确地预测锂电池剩余使用寿命,与其他模型相比,预测误差得到明显改善。 For the performance maximization and maintenance of lithium-ion batteries,accurate remaining useful life(RUL)predictions are essential.To accurately predict the RUL of lithium-ion batteries,a novel double Gaussian model is proposed to describe the aging process of lithium-ion batteries.Specifically,several popular empirical models for battery capacity degradation are analyzed and evaluated,and a double Gaussian model with better performance is proposed.Afterward,a double Gaussian aging model is established utilizing the particle filter(PF)technique,based on the historical capacity data.The fitted correlation coefficient and root mean square error are also introduced to assess the model.Finally,the RUL prediction experiments are conducted to verify the verification of the proposed aging model based on the battery aging data from the laboratory’s battery cells and the National Aeronautics and Space Administration(NASA)Ames Prognostics Center of Excellence.The experimental results demonstrate that the proposed aging model can predict the RUL accurately,and the prediction error is significantly improved compared to other models.
作者 李彦梅 刘惠汉 张朝龙 罗来劲 LI Yanmei;LIU Huihan;ZHANG Chaolong;LUO Laijing(School of Electronic Engineering and Intelligent Manufacturing,Anqing Normal University,Anqing 246011;College of Intelligent Science and Control Engineering,Jinling Institute of Technology,Nanjing 211169)
出处 《电气工程学报》 CSCD 2022年第4期32-40,共9页 Journal of Electrical Engineering
基金 国家重点研发计划(2020YFB0905905,2016YFF0102200) 国家自然科学基金(51637004) 安徽省级质量工程“四新”研究与改革实践(2021sx092)资助项目。
关键词 锂离子电池 剩余使用寿命 双高斯模型 粒子滤波算法 Lithium-ion battery RUL prediction double Gaussian model particle filter(PF)
  • 相关文献

参考文献6

二级参考文献62

共引文献71

同被引文献47

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部