期刊文献+

Numerical investigation of welding residual stress in Q960 ultrahigh-strength steel multipass joints

下载PDF
导出
摘要 This study investigates Q960 ultrahigh-strength steel as the research object.Based on software,a thermo-metallurgical-mechanical finite element model(FEM)is established to simulate the welding temperature field and residual stress distribution.At the same time,the hole-drilling(HD)method is used to measure the residual-welding stress distribution on the surface of the single-pass.Numerical simulation and experimental results show that the predicted value of numerical simulation agrees well with the experimentally measured value,which verifies the accuracy of the FEM.Based on the verification model,the surface and internal stress distribution characteristics of Q960 ultrahigh-strength steel during the multipass remelting of Q960 ultrahigh-strength steel considering solid-state phase transformation(SSPT)are analyzed.The results show that when SSPT is considered,after single-pass welding of Q960 ultrahigh-strength steel,the welded joint is dominated by tensile residual stress,and the peak stress is located in the heat-affected zone(HAZ).At the same time,the effect of SSPT can significantly reduce the size of the residual stress in the weld and affect the distribution of the lateral residual stress.Additionally,as the number of weld passes increased,the transverse residual stress at the center of the weld showed a“stepped”trend,and a local compressive stress peak appeared at the location of the HAZ.
作者 ZHENG Qiao
机构地区 Research Institute
出处 《Baosteel Technical Research》 CAS 2022年第4期1-8,共8页 宝钢技术研究(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部