摘要
对复杂网络中的节点进行重要性度量有助于提高网络的鲁棒性和可靠性,然而一些单一性的经典指标不可避免地存在一定的局限性和片面性。综合节点局部特征和网络全局特性,提出一种相较节点删除法更加精准的重要节点评估方法。该法以节点邻域拓扑相似度定义节点的局部重要性,以移除节点后网络连通性的变化程度表征节点的全局重要性。为验证所提方法的有效性和适用性,在不同类型的网络中进行了比较实验。实验结果表明,该方法能有效识别网络中的重要节点,在Jazz网络中的精细程度相较于节点删除法提升了16%。该方法优化了节点删除法,克服了节点删除法在区分不同“桥”节点重要性时的缺点,同时对于移除后具有相同连通性的节点,根据其周围邻居拓扑的相似度可以进一步细分重要性。
Measuring the importance of nodes in networks is of great help to improve the robustness and reliability, but some classical centrality indices inevitably have limitations and one-sidedness. Therefore,propose a method that integrates the global and local characteristics of the network, which is more exact than the node deletion method. It defines the local importance of nodes by quantifying the similarity of node neighbors’ topological. The global importance of nodes is decided by the network connectivity after removing nodes’ incident links. To validate the effectiveness and applicability of the proposed algorithms, contrast experiments were carried out in different kinds of networks. The results show that the method can effectively identify the vital nodes in networks. Compared with the node deletion method, the fineness of this method is improved by 16% in the Jazz network. This method optimizes the node deletion method and overcomes the disadvantage of node deletion method in distinguishing the importance of different "bridge" nodes. At the same time, nodes with the same connectivity after removal can further subdivide the importance according to the topology similarity of their neighbors.
作者
丁晓鑫
张科
胡文军
高俊
DING Xiao-xin;ZHANG Ke;HU Wen-jun;GAO Jun(School of Information Engineering,Huzhou University,Huzhou 313000,China)
出处
《软件导刊》
2022年第12期84-91,共8页
Software Guide
基金
国家自然科学基金项目(61772198)
国家重点研发计划项目(2020YFC1523300)。
关键词
复杂网络
生成树
节点相似性
拓扑结构
重要节点
complex network
spanning tree
node similarity
topological structure
vital node