期刊文献+

基于STFT和DCNN的伤损识别方法 被引量:1

Damage identification method based on DCNN and STFT
下载PDF
导出
摘要 为解决脉冲涡流检测(PECT)信号特征提取耗时且需要专家经验等问题,提出了一种基于短时傅里叶变换(STFT)和两层深度卷积神经网络(T-DCNN)的智能伤损识别方法。该法采用短时傅里叶变换将一维的PECT信号转换为二维时频信号;构建由两层卷积层、BN层、池化层和全连接层构成的DCNN,并将二维时频信号作为输入,进行端对端伤损识别。结果表明,该法与其他经典网络构架的伤损识别方法(VGG11、VGG16)相比,具有精度高、耗时短等优点,更符合工程领域应用需求。 In order to solve the problems of timp-consuming feature extraction of pulse turbine detection signal and requiring expert’s experience,an intelligent damage identification method based on pulse eddy current technology and two layers deep convolutional neural network(T-DCNN)is proposed.Firstly,the pulsed eddy current(PEC)testing technology is used to obtain one-dimensional time signal,and then the short-time Fourier transform(STFT)method is used to convert it into two-dimensional time-frequency signal,which is grayed as the input of T-DCNN.Secondly,it is compared with VGG11,VGG16 and the methods of ensemble empirical mode decomposition(EEMD)and Synchrosqueezed Wavelet Transforms(SSWT),the recognition performance of the self-built network is proved.Finally,the superiority of STFT method is proved.Experiments show that the proposed method has the advantages of short time,good accuracy and it fulfills the requirements of engineering field.
作者 刘宝玲 胡慧玲 姚先哲 LIU Baoling;HU Huiling;YAO Xianzhe(Jiangxi Engineering Research Center of High Power Electronics and Grid Smart Metering,Nanchang Institute of Technology,Nanchang 330099,China)
出处 《南昌工程学院学报》 CAS 2022年第6期41-46,共6页 Journal of Nanchang Institute of Technology
基金 国家自然科学基金资助项目(61903176)。
关键词 伤损识别 脉冲涡流检测 短时傅里叶变换 两层深度卷积神经网络 damage identification pulse eddy current testing short-time Fourier transform two-layer deep convolutional neural network
  • 相关文献

参考文献4

二级参考文献41

  • 1杨宾峰,罗飞路,张玉华,曹雄恒.飞机多层结构中裂纹的定量检测及分类识别[J].机械工程学报,2006,42(2):63-67. 被引量:36
  • 2Доктор ВКТеПлухин,彭原平,谢晓峰,王晓龙(译),宋岩(译).EMDS—TM-42TS电磁探伤测井仪模型井测井与评价[J].国外测井技术,2006,21(5):56-63. 被引量:7
  • 3李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 4杜彦良,牛学勤.现代轨道交通技术与装备[M].北京:科学出版社,2012.
  • 5KUMAR S. A study of the rail degradation process to pre- dict rail breaks [ D 1- Lule~ University of Technology, 2006.
  • 6JASIONIENE E, ~UKAUSKAS E. The ultrasonic wave interaction with porosity defects in welded rail head [ J ]. Uhragarsas (Ultrasound) , 2010, 65 ( 1 ) : 12-18.
  • 7VIDAUD M, ZWANENBURG W J. Current situation on rolling contact fatigue-a rail wear phenomenon [ C J. Pro- ceedings of the 9th Swiss Transport Research Conference, 2009 : 9-11.
  • 8MARINO F, DISTANTE A, MAZZEO P L,et al. A real- time visual inspection system for railway maintenance: Automatic hexagonal-headed bolts detection systems [ J J. IEEE Transactions on Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3) :418-428.
  • 9PAPAELIAS M P, ROBERTS C, DAVIS C L. A review on non-destructive evaluation of rails : state-of-the-art and future development [ J ]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 367-384.
  • 10MANDRIOTA C,NITYI M, ANCONA N, et al. Filter- based feature selection for rail defect detection [ J 1. Ma- chine Vision and Applications, 2004, 15(4) : 179-185.

共引文献197

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部