摘要
为解决脉冲涡流检测(PECT)信号特征提取耗时且需要专家经验等问题,提出了一种基于短时傅里叶变换(STFT)和两层深度卷积神经网络(T-DCNN)的智能伤损识别方法。该法采用短时傅里叶变换将一维的PECT信号转换为二维时频信号;构建由两层卷积层、BN层、池化层和全连接层构成的DCNN,并将二维时频信号作为输入,进行端对端伤损识别。结果表明,该法与其他经典网络构架的伤损识别方法(VGG11、VGG16)相比,具有精度高、耗时短等优点,更符合工程领域应用需求。
In order to solve the problems of timp-consuming feature extraction of pulse turbine detection signal and requiring expert’s experience,an intelligent damage identification method based on pulse eddy current technology and two layers deep convolutional neural network(T-DCNN)is proposed.Firstly,the pulsed eddy current(PEC)testing technology is used to obtain one-dimensional time signal,and then the short-time Fourier transform(STFT)method is used to convert it into two-dimensional time-frequency signal,which is grayed as the input of T-DCNN.Secondly,it is compared with VGG11,VGG16 and the methods of ensemble empirical mode decomposition(EEMD)and Synchrosqueezed Wavelet Transforms(SSWT),the recognition performance of the self-built network is proved.Finally,the superiority of STFT method is proved.Experiments show that the proposed method has the advantages of short time,good accuracy and it fulfills the requirements of engineering field.
作者
刘宝玲
胡慧玲
姚先哲
LIU Baoling;HU Huiling;YAO Xianzhe(Jiangxi Engineering Research Center of High Power Electronics and Grid Smart Metering,Nanchang Institute of Technology,Nanchang 330099,China)
出处
《南昌工程学院学报》
CAS
2022年第6期41-46,共6页
Journal of Nanchang Institute of Technology
基金
国家自然科学基金资助项目(61903176)。
关键词
伤损识别
脉冲涡流检测
短时傅里叶变换
两层深度卷积神经网络
damage identification
pulse eddy current testing
short-time Fourier transform
two-layer deep convolutional neural network