期刊文献+

基于注意力机制的堆叠LSTM心电预测算法 被引量:2

Anomaly Prediction in ECG Signals via Stacked Long Short-term Memory with Attention Mechanism
下载PDF
导出
摘要 心电信号的处理一直是一个热门的研究领域,针对日趋增长的心电数据分析需求,国内的研究大多停留在分类处理阶段,对心电异常的预测相对较少。而心电异常的提前预警对预防接下来可能出现的危险极为重要,因此,提出了一种新的心电预测算法。首先,对原始数据进行小波变换处理,经过预处理后的数据能够更好地从中提取特征进行学习。将处理后的信号输入训练模型,在训练过程中采用两个LSTM网络结构,构成一种堆叠的循环神经网络模型。输出的信号再通过注意力机制,加强重点关注区域后经由全连接层输出结果。模型采用预测准确率作为衡量模型性能的指标,并在MIT-BIH数据集上进行了测试。经过实验数据的对比,该模型在此数据集上最终预测准确率为97.7%,与传统堆叠LSTM网络相比,提升了1.3百分点;与加入注意力机制的单层LSTM网络相比,提升了0.9百分点。结果表明,该模型有效地提高了预测的准确率,充分证明了其优越性。 ECG signal processing has always been a hot research field. For the growing demand of ECG data analysis, most domestic research stays in the stage of classification, and there is relatively little prediction of ECG abnormalities. The early warning of ECG abnormality is quite essential to prevent the coming possible danger. Therefore, a new ECG prediction algorithm is proposed. Firstly, the original data is processed by wavelet transform. The preprocessed data can better extract features from them for learning. The processed signal is then input into the training model. In the training process, the model composed of two LSTM networks is used to form a stacked cyclic neural network model. The output then outputs the results through the full connection layer after the attention mechanism which can enhance the focus area. The model uses the prediction accuracy as the index to measure the performance of the model, and is tested on MIT-BIH data set. Compared with the experimental data, the final prediction accuracy of the model on this data set is 97.7%,which is 1.3% higher than that of the traditional stacked LSTM network and is 0.9% higher than that of the single-layer LSTM network with attention mechanism. The results show that such model effectively improves the accuracy of prediction and fully proves its superiority.
作者 谭庆康 潘沛生 TAN Qing-kang;PAN Pei-sheng(School of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《计算机技术与发展》 2023年第1期62-67,共6页 Computer Technology and Development
基金 国家自然科学基金(61801240)。
关键词 堆叠式LSTM网络 注意力机制 心律失常 心电预测 深度学习 stacked LSTM network attention mechanism arrhythmia ECG prediction deep learning
  • 相关文献

参考文献4

二级参考文献9

共引文献91

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部