摘要
高锰酸盐指数(COD_(Mn))是衡量水质状况的最重要参数之一,能反映水体受还原性物质污染的程度。结合经验小波变换(EWT)和双向长短期记忆(BLSTM)神经网络,提出了一种先利用EWT将原始的COD_(Mn)时间序列分解成若干成分,然后利用BLSTM神经网络对分解出来的每个成分进行预测,最后将所有成分的预测结果重建获得最终COD_(Mn)预测值的新的混合模型EWT-BLSTM;并以2017年8月—2020年4月鄱阳湖COD_(Mn)监测数据为研究对象,进行模型性能验证。结果表明:EWTBLSTM模型具有良好的预测性能,预测未来1 d以后的COD_(Mn)时,EWT-BLSTM模型的平均绝对百分比误差为2.25%,与单一BLSTM神经网络模型相比降低了10.53%;预测未来7 d以后的COD_(Mn)时,EWT-BLSTM模型的平均绝对百分比误差为8.36%,与单一BLSTM神经网络模型相比降低了16.16%。在COD_(Mn)峰值处,该模型依然保持较高稳定的预测性能,说明在数据相对复杂、极端的情况下,该模型依然适用。
Permanganate index(COD_(Mn))is one of the most important parameters to measure water quality and could reflect the degree of water pollution by reducing substances.A novel COD_(Mn)forecast model(EWT-BLSTM)by combining empirical wavelet transform(EWT)and bidirectional long short-term memory(BLSTM)neural network was proposed.First,the original COD_(Mn)time series was decomposed into several components by EWT.Next,BLSTM neural network was employed to predict each decomposed component.Finally,the predictions of all components were reconstructed to obtain the new hybrid model EWT-BLSTM for the final COD_(Mn)predictions.COD_(Mn)data of Poyang Lake was used to evaluate the proposed forecast model.The results showed that EWTBLSTM model had a powerful forecast capacity.For 1,7-day ahead forecasting,the mean absolute percentage error(MAPE)of the forecast by EWT-BLSTM was 2.25%and 8.36%,respectively.The MAPE reduced by EWTBLSTM over BLSTM was 10.53%for 1-day ahead forecasting and 16.16%for 7-day ahead forecasting.Furthermore,the proposed model showed highly stable forecasting performance for COD_(Mn)peak points,indicating that the proposed method was still applicable in the case of relatively complex data with extreme points.
作者
陈伟
金柱成
俞真元
王晓丽
彭士涛
魏燕杰
CHEN Wei;KIM Jusong;YU Jinwon;WANG Xiaoli;PENG Shitao;WEI Yanjie(School of Environmental Science and Safety Engineering,Tianjin University of Technology;Department of Mathematics,University of Science,DPR Korea;Tianjin Research Institute for Water Transport Engineering,Ministry of Transport)
出处
《环境工程技术学报》
CAS
CSCD
北大核心
2023年第1期180-187,共8页
Journal of Environmental Engineering Technology
基金
中央级公益性科研院所基本科研业务费专项(TKS190202,TKS20200405)
天津市科技计划项目(20JCQNJC00100)。