期刊文献+

融合神经与免疫机理的信息系统仿生免疫模型

A Bionic Information System Immune Model Integrating Neural and Immune Mechanisms
下载PDF
导出
摘要 针对现有信息系统缺乏有效主动防御模型、安全体系与信息系统融合不充分的问题,提出一种融合神经与免疫机理的仿生免疫模型。模仿人体神经控制系统与免疫系统高效的安全防御机理,借鉴其独特的“感知-策略-效应-反馈”工作机制与自适应的免疫算法,从整体架构入手,将安全体系和信息系统高度融合。通过各仿生安全组件的高效联动,实现信息感知分布性、控制适应性、防御主动性。实验结果表明,提出的融合神经与免疫机理的仿生免疫模型面对安全风险能够主动防御,自适应调整安全策略,维持系统任务的稳态运转。融合神经与免疫机理的仿生免疫模型为信息系统仿生免疫的实现提供了理论架构支撑。 A bionic immune model adapted from human immune mechanisms and neural control mechanisms is proposed in response to the problem of inadequate design and insufficient fusion in the current computer immune system. By imitating the unique working mechanism including the adaptive immune strategy and the pipeline of "perception-strategy-effect-feedback" from the human immune control system,our model allows for an improved security defense design with flexible control and active defense capabilities. Meanwhile, the efficient linkage of bionic safety components enables a heightened architectural integration of safety systems and information systems in our model.The experimental results show that the proposed bionic immune model integrating human immune and neural control mechanisms can achieve active defense against security risks and adaptive adjustment of security policies while maintaining the steady operation of the system, which provides a theoretical framework for the realization of the computer immune system.
作者 胡爱群 李涛 卞青原 HU Aiqun;LI Tao;BIAN Qingyuan(Southeast University,Nanjing 210096,China)
出处 《中兴通讯技术》 2022年第6期48-56,共9页 ZTE Technology Journal
基金 东南大学移动信息通信与安全前沿科学中心项目(2242022k30007)。
关键词 信息系统安全 计算机免疫系统 仿生安全 安全模型 information system security computer immune system biometric security security model
  • 相关文献

参考文献8

二级参考文献51

  • 1刘奇旭,张翀斌,张玉清,张宝峰.安全漏洞等级划分关键技术研究[J].通信学报,2012,33(S1):79-87. 被引量:36
  • 2梁可心,李涛,刘勇,陈桓.一种基于人工免疫理论的新型入侵检测模型[J].计算机工程与应用,2005,41(2):129-132. 被引量:13
  • 3李涛.基于免疫的网络安全风险检测[J].中国科学(E辑),2005,35(8):798-816. 被引量:40
  • 4陈宗基,秦旭东,高金源.非相似余度飞控计算机[J].航空学报,2005,26(3):320-327. 被引量:41
  • 5孙红兵,陈沫,蔡一兵,李忠诚.IPv4/IPv6转换网关性能测试方法研究[J].计算机工程,2006,32(24):93-95. 被引量:3
  • 6Perelson A S, Weisbuch G. Immunology for physicists. Review of Modern Physics, 1997, 69(4): 1219~1263.
  • 7Kim J, Bentley P J. Negative selection: how to generate detectors. In: Timmis J, Bentley P J, eds. The First International Conference on Artificial Immune Systems (ICARIS), Canterbury UK, 2002. Kent: Canterbury Printing Unit, 2002. 89~98.
  • 8Backus J. Can programming be liberated from the Von Neumann Style? A functional style and its algebra of programs. CACM, 1978, 21(8): 613~641.
  • 9Kim J, Bentley P J. Towards an artificial immune system for network intrusion detection: an investigation of dynamic clonal selection. In: the Congress on Evolutionary Computation (CEC- 2002), Honolulu, 2002. Piscataway: IEEE Press, 2002. 1015~1020.
  • 10de Castro L N. Timmis J 1. Artificial immune systems as a novel soft computing paradigm. Soft Computing Journal. 2003. 7(8):526-544.

共引文献282

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部