摘要
为揭示赤铁矿矿尘在人体呼吸道的运动特征,对含铁矿尘的科学职业防护提供理论基础,以某露天赤铁矿的矿尘样本为研究对象,运用ANSYS等软件,建立口腔-支气管的人体完整呼吸道三维结构,使用离散相模型模拟赤铁矿矿尘在呼吸道内的运动沉积特征,分析矿尘在呼吸道的沉积数量、沉积位置、逃逸位置及影响因素。结果表明:矿尘沉积受粒径及劳动强度影响,粒径大于1μm的矿尘,沉积率随粒径、劳动强度增大而升高,其中,5.21μm以上的矿尘将全部沉积于呼吸道且咽喉沉积率大于85%。矿尘主要沉积位置为咽喉后部及气管涡流处。劳动强度越大,咽喉后部沉积量越大,气管处的沉积率越低。粒径越大,矿尘在气管位置的沉积率呈现先升高后降低的趋势。矿尘逃逸位置主要为左下叶外侧底段支气管及右下叶外侧底段支气管。
In order to reveal the movement rule of hematite mine dust in the human respiratory tract,a three-dimensional model of oral and bronchial human body complete respiratory tract was established by ANSYS software.Using the ore dust sample of a open pit hematite as the research object,this study would provide theoretical basis for occupational protection of iron ore dust.The movement and deposition rule of hematite ore dust in the respiratory tract of workers with different labor intensity was simulated by discrete phase model.The results show that dust deposition is affected by the particle size of dust and the labor intensity.The deposition rate of ore dust with particle size greater than 1μm increases with the increase of particle size and labor intensity.The mineral dust above 5.21μm deposits in respiratory tract,and the deposition rate of pharynx is more than 85%.The mineral dust mainly deposits at the back of throat and at the trachea vortex.The greater the labor intensity,the greater the deposition at the back of throat,and the lower the deposition rate in the trachea.With the increase of particle size,the deposition rate of ore dust in the trachea first increases and then decreases.The escape positions are mainly the bronchus of the lateral lower part of the left lower lobe and the bronchus of the lateral lower part of the right lower lobe.
作者
廖慧敏
苏红
朱逸龙
李明
LIAO Huimin;SU Hong;ZHU Yilong;LI Ming(School of Resources and Safety Engineering,Central South University,Changsha Hunan 410083,China)
出处
《中国安全科学学报》
CAS
CSCD
北大核心
2022年第12期165-173,共9页
China Safety Science Journal
基金
国家自然科学基金资助(51704328,51674289)
国家重点研究发展计划项目(2017FFC0805204)。
关键词
赤铁矿矿尘
人体呼吸道
劳动强度
沉积率
数值模拟
hematite ore dust
human respiratory tract
labor intensity
deposition rate
numerical simulation