期刊文献+

深度层次注意力矩阵分解 被引量:1

Deep hierarchical attention matrix factorization
下载PDF
导出
摘要 矩阵分解由于其较好的评分预测能力而被广泛应用于的个性化推荐中,很多模型也在矩阵分解的基础上改进以提升推荐性能。但是,这些模型由于获取用户偏好信息的能力有限而导致其推荐效果不佳。为了充分挖掘用户的偏好信息,提出了深度层次注意矩阵分解(DeepHAMF)的推荐模型。首先,对于原始数据除了输入到多层感知机之外,还采用自注意力机制编码后再输入到多层感知机中,目标是捕获显式偏好信息,并将这部分命名为自注意力层;其次,将原始矩阵分解与注意力编码之后的矩阵分解结果分别与多层感知机输出的结果通过注意力机制融合,这样能够充分挖掘出用户的潜在偏好信息,这部分命名为层次注意力模块;最后,通过残差网络将层次注意力模块和自注意力层进行信息拟合,这部分命名为残差融合层。在公开评分数据集上的实验结果表明,DeepHAMF比现有的评分预测模型效果更好。 Matrix factorization is widely used in personalized recommendation because of its better ability of rating prediction,so many models based on matrix factorization is designed to improve the performance of recommendation.However,the limited ability of these models to mine users’potential preference information results in unsatisfactory recommendation effect.In order to mine preferences of user and obtain better recommendation effect,a Deep Hierarchical Attention Matrix Factorization method(DeepHAMF)is proposed.Firstly,the original data input into the multi-layer perceptron,and the self-attention mechanism is also used to encode the input into the multi-layer perceptron,which aims to capture the original preference information.This part is called self-attention layer.Secondly,the original matrix factorization results and the matrix factorization results after attention operation are fused with the output results of multi-layer perceptron respectively by attention mechanism,so the user’s prefe-rence information can be fully mined.This part is called self-attention layer.Last but not the least,results of self-attention and hierarchical attention are fitting by the residual network module.Experimental results on public rating data sets show that DeepHAMF outperforms existing rating prediction algorithms.
作者 李建红 苏晓倩 吴彩虹 LI Jian-hong;SU Xiao-qian;WU Cai-hong(School of Artificial Intelligence,Anhui University of Science and Technology,Huainan 232001;School of Safety Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处 《计算机工程与科学》 CSCD 北大核心 2023年第1期28-36,共9页 Computer Engineering & Science
基金 淮南市市级指导性科技计划项目(2021003) 安徽理工大学校级重点项目(xjzd2020-15)。
关键词 层次注意力 自注意力网络 残差融合 矩阵分解 hierarchical attention self-attention network residual fusion matrix factorization
  • 相关文献

参考文献6

二级参考文献40

  • 1Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 Computer Supported Cooperative Work. Chapel Hill: ACM, 1994. 175-186.
  • 2Hill W C, Stead L, Rosenstein M, Furnas G W. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the 1995 SIGCHI Conference on Human Factors in Computing Systems. Denver: ACM, 1995. 194-201.
  • 3Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM, 2004. 393-402.
  • 4O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology (TOIT), 2004, 4(4): 344-377.
  • 5Mobasher B, Burke R, Sandvig J J. Model-based collaborative filtering as a defense against profile injection attacks. In: Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference. Boston, Massachusetts, USA: AAAI, 2006.
  • 6Gunes I, Kaleli C, Bilge A, Polat H. Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 2014, 42(4): 767-799.
  • 7Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceedings of the 7th International Workshop on Knowledge Discovery on the Web. Chicago, IL: Springer Berlin Heidelberg, 2006. 96-118.
  • 8Burke R D, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA, USA: ACM, 2006. 542-547.
  • 9Mehta B, Nejdl W. Attack resistant collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008. 75-82.
  • 10O'Mahony M P, Hurley N J, Silvestre G C M. Efficient and secure collaborative filtering through intelligent neighbor selection. In: Proceedings of the 16th European Conference on Artificial Intelligence. Valencia, Spain: IOS Press, 2004. 383-387.

共引文献436

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部