期刊文献+

一种FDM成形中气体辅助喷头的设计及其对打印件力学性能的影响

Design of a gas-assisted nozzle in FDM molding and its influence on mechanical properties of printing parts
下载PDF
导出
摘要 以聚乳酸为原料,设计了一种基于熔融堆积成形技术的3D打印机气体辅助喷头,通过输入高温高压气体施加于打印表层,促进层间大分子链互相扩散、渗透以及缠结,进而通过热压粘合作用,提高了打印件的层间机械强度。采用正交试验,对气体流量和气体压力对打印件力学性能的影响进行了研究。结果表明,随着气体流量和气体压力的提高,打印件的层间结合强度均呈先增大后减小的趋势,且在气体流量为1.75 L·min^(-1)、气体压力为0.40 MPa时平均拉伸强度最大为40.0 MPa,比无气体辅助环境下的拉伸强度提高了115.1%。表明对打印表面施加高温高压的热气流可显著提高打印件的拉伸性能,验证了所设计的气体辅助喷头的可行性。 Using the polylactide as raw material,a gas-assisted nozzle of 3D printer based on fused deposition modeling(FDM)technol-ogy was designed.The input of high temperature and high pressure gas was applied to the printing surface to promote the interlayer diffu-sion,penetration and entanglement of macro molecular chains,and the interlayer mechanical strength of the printed parts was improved by hot pressing bonding.The effects of gas flow and gas pressure on the mechanical properties of the printed parts were studied by orthogonal tests.The results show that with the increase of gas flow and gas pressure,the interlayer bonding strength of the printed parts increases first and then decreases,and the maximum value of average tensile strength is 40.0 MPa when the gas flow rate is 1.75 L·min^(-1) and the gas pressure is 0.40 MPa,which is 115.1%higher than that in the non-gas-assisted environment.It is shown that applying high tempera-ture and high pressure hot gas flow on the printing surface can significantly improve the tensile properties of the printed parts,which verifies the feasibility of the designed gas-assisted nozzle.
作者 肖建华 许煌翔 刘晓波 XIAO Jian-hua;XU Huang-xiang;LIU Xiao-bo(School of Chemistry and Chemical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University,Nanchang 330036,China)
出处 《塑性工程学报》 CAS CSCD 北大核心 2023年第1期208-214,共7页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(52063021)。
关键词 3D打印 气体辅助 层间结合强度 正交试验法 3D printing gas-assisted interlayer bonding strength orthogonal test method
  • 相关文献

参考文献7

二级参考文献39

  • 1王天明,金烨,习俊通.FDM工艺过程中丝材的粘结机理与热学分析[J].上海交通大学学报,2006,40(7):1230-1233. 被引量:23
  • 2顾书英,詹辉,任杰.聚乳酸/PBAT共混物的制备及其性能研究[J].中国塑料,2006,20(10):39-42. 被引量:64
  • 3朱振宇,骆光林,任鹏刚.聚乳酸降解机理及其方法探讨[J].材料导报(网络版),2007,2(1):35-37. 被引量:6
  • 4Yan Y N,Zhang R J,Hong G D.Research on the bonding of material paths in melted extrusion modeling[J].Materials and Design,2000,21(2):93-99.
  • 5Yardimci M A.Conceptual framework for the thermal process modeling of fused deposition[J].Rapid Prototyping Journal,1996,2 (2):26-31.
  • 6Gu P,Li L.Fabrication of biomedical prototyping with locally controlled properties using FDM[J].CIRP Annals-Manufacturing Technology,2002,51(1):181-184.
  • 7Eden P.FDM investment significantly cuts costs[J].Medical Design Technology,2000,4(8):14.
  • 8Rodriguez J F,Thomas J P,Renaud J E.Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling[J].Rapid Prototyping Journal,2003,9(4):219-230.
  • 9Holman J H.Heat transfer[M].7th ed.New York:McGraw-Hill,1990.
  • 10霍尔曼.传热学[M].马重芳,马庆芳译.北京:人民教育出版社,1981.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部