期刊文献+

高炉渣液滴破碎过程数值模拟 被引量:2

Numerical simulation of the breakup of high temperature blast furnace slag droplet
下载PDF
导出
摘要 采用流体体积法(VOF)、RNG k-ε湍流模型和凝固/熔化模型对高炉渣液滴二次破碎过程进行数值模拟,获得了高炉渣液滴临界状态下袋式破碎过程,分析了高炉渣液滴传热过程对破碎过程的影响,研究了高炉渣液滴破碎的临界韦伯数.结果表明:在气动力驱动下,高炉渣液滴会发生形变,表面压力的波动可导致液滴破碎;传热过程仅使高炉渣表面温度略微降低,对黏度影响不大,因此高炉渣液滴传热过程对破碎过程的影响可忽略不计;高炉渣液滴的初始粒径越大、气流速度越大,破碎效果越好;在1773 K的初始温度下,高炉渣液滴发生破碎的临界韦伯数约为15.5;当液滴的黏度增加时,奥内佐格数增大,破碎的临界韦伯数也增大,通过拟合可得到高炉渣主要黏度范围内的奥内佐格数与临界韦伯数的关系式. The secondary breakup process of blast furnace slag droplets was numerically simulated with volume of fluid(VOF),RNG k-εturbulence model and Solidification/Melting model,which obtained the bag breakup process of slag droplet under critical condition.Besides,the effect of heat transfer on droplet breakup process were analyzed and the critical We of blast furnace slag droplet was obtained.Results indicate that deformation of slag droplet is driven by aerodynamic force while surface pressure fluctuations lead to droplet breakup.And the temperature of slag surface decreases lightly having little effect on the viscosity due to heat transfer,which means the influence of heat transfer of slag droplet on the breakup can be ignored.Besides,with the increase of diameter of droplet and velocity of air,the breakup effect is better.The critical We of blast furnace slag droplet is 15.5 when the temperature is 1773 K.Furthermore,Oh increasing with the increase of viscosity of droplet,which leads to the increase of critical We.The relation between the critical We and Oh under the main viscosity range of blast furnace slag is obtained.
作者 杜宇航 刘晓宏 温治 楼国锋 Du Yuhang;Liu Xiaohong;Wen Zhi;Lou Guofeng(School of Energy and Environmental Engineering,University of Science and Technology Bejing,Bejing 100083,China)
出处 《材料与冶金学报》 CAS 北大核心 2023年第1期23-29,共7页 Journal of Materials and Metallurgy
基金 国家重点研发计划(No.2017YFB0304303)。
关键词 高炉渣 液滴破碎 临界韦伯数 流体体积法 blast furnace slag droplet breakup critical We volume of fluid method
  • 相关文献

参考文献4

二级参考文献31

  • 1史绍熙,郗大光,秦建荣,刘宁,舒国才.高速粘性液体射流的不稳定模式[J].内燃机学报,1997,15(1):1-7. 被引量:16
  • 2Dushin V R, Kulchitskiy A V. Mathematical simulation for non-equilibrium droplet evaporation[J] . Acta Astronautic, 2008, 63(11-12): 1360-1371.
  • 3Pilch M, Erdman C. Use of break-up time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced break-up of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6): 741-757.
  • 4Hsiang L P, Faeth G M. Near-limit drop deformation and secondary breakup[J]. International Journal of Multiphase Flow, 1992, 18(5). 635-652.
  • 5Hsiang L P, Faeth G M. Drop deformation and breakup due to shock wave and steady disturbances [J]. International Joumal of Multiphase Flow, 1995,21(4): 545-560.
  • 6Chou W H, Faeth G M. Temporal properties of secondary drop breakup in the bag breakup regime[J]. International Journal of Multiphase Flow, 1998, 24(6): 889-912.
  • 7Chou W H, Hsiang LP. Temporal properties of drop breakup in the shear breakup regime[J]. Imemational Journal of Multiphase Flow, 1997, 23(4): 651-669.
  • 8Dai Z, Faeth G M. Temporal properties of secondary drop breakup in the multimode breakup regime[J]. International Journal ofMultiphaseFlow, 2001, 27(2): 217-236.
  • 9Liu Z, Reitz R D. An analysis of the distortion and breakup mechanism of high speed liquid drops [J]. International Journal of Multiphase Flow, 1997, 23(4): 631-650.
  • 10Lee C H, RolfD, Reitz R D. An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream [J]. International Journal of Multiphase Flow, 2000, 26(2): 229-243.

共引文献16

同被引文献31

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部