期刊文献+

Aggregation-induced emission luminogen for in vivo three-photon fuorescence lifetime microscopic imaging 被引量:1

下载PDF
导出
摘要 Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the deep tisue.However,the weak three photon fluorescence signals may be not well presented in the traditional fuorescence intensity imaging mode.Fluorescence lifetime of certain probes is insensitive to the intensity of the excitation laser.Moreover,fluorescence lifetimne imaging microscopy(FLIM)can detect weak signals by utilizing time correlated single photon counting(TCSPC)technique.Thus,it would be an improved strategy to combine the 3PFM imaging with the FLIM together.Herein,DCDPP-2TPA,a novel agegation-induced emission luminogen(AIEgen),was adopted as the fluorescent probes.The three-photon absorption cros-section of the AlEgen,which has a deep-red fluorescence emission,was proved to be large.DCDPP-2TPA nanoparticles were synthesized,and the three photon fluorescence lifetime of which was measured in water.Moreover,in vrivo thre-photon fuorescence lifetime microscopic imaging of a craniotomy mouse was conducted via a home made optical system.High contrast cerebrovascular images of different vertical depths were obtained and the maximun depth was about 600 pumn.Even reaching the depth of 600 pum,tiny capillary vessels as small as 1.9 pum could still be distinguished.The three photon fuorescence lifetimes of the capillaries in some representative images were in accord with that of DCDPP-2TPA nanoparticles in water.A vivid 3D reconstruction was further organized to present a wealth of lifetime information.In the future,the combination strategy of 3PFM and FLIM could be further applied in the brain functional imaging.
出处 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第5期95-104,共10页 创新光学健康科学杂志(英文)
基金 supported by National Natural Science Foundation of China(61735016) Zhejiang Provincial Natural Science Foundation of China(LR17F050001).
  • 相关文献

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部