期刊文献+

A ggregation-induced emission nanoparticles for in vivo three-photon fuorescence microscopic rat brain angiography

下载PDF
导出
摘要 Rodents are popular biological models for physiological and behavioral research in neuroscience and rats are better models than mice due to their higher genome similarity to human and more accessible surgical procedures.However,rat brain is larger than mice brain and it needs powerful imaging tools to implement better penetration against the scattering of the thicker brain tissue.Three-photon fluorescence microscopy(3PFM)combined with near-infrared(NIR)excitation has great potentials for brain circuits imaging beause of its abilities of anti scattering,deep-tissue imaging,and high signal-to-noise ratio(SNR).In this work,a type of AIE lumninogen with red fuorescence was synthesized and encapsulated with Pluronic F-127 to make up form nano-particles(NPs).Bright DCDPP-2TPA NPs were employed for in trino three-photon fuorescent laser scanning microscopy of blood vessels in rats brain under 1550 nm femtosecond laser exci-tation.A fine three-dimensional(3D)reconstruction up to the deepness of 600 pm was achieved and the blood flow velocity of a selected vessel was measured in vrito as well.Our 3PFM deep brain imaging method simultaneously recorded the morphology and function of the brain blood vessels in vivo in the rat model.Using this angiography combined with the arsenal of rodent's brain disease,models can accelerate the neuroscience research and clinical diagnosis of brain disease in the future.
出处 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第6期34-45,共12页 创新光学健康科学杂志(英文)
基金 supported by the Zhejiang Provincial Natural Science Foundation of China(LR17F050001 and LY17C090005) the National Natural Science Foundation of China(61735016 and 91632105) National Basic Research Program of China(973 Program,2013CB834701 and 2013CB834704).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部