期刊文献+

旋转射流冷却数值模拟研究 被引量:1

Numerical simulation of rotary jet cooling
下载PDF
导出
摘要 使用ANSYS FLUENT软件和RNG k-ε湍流模型分别研究了十字形、内十字形和花形结构的螺旋喷嘴内部流动特性和耦合面换热特性。模拟结果研究表明,螺旋角θ越小喷嘴出口速度越高,喷出的水流更集中,水流运动轨迹越清晰且规律越明显。同一工况下,θ=30°的花形喷嘴的换热效率和换热均匀性均优于其余两种喷嘴的值;耦合面努塞尔数Nu最大值会随着雷诺数Re不断增加而逐渐远离射流中心处(r/d_(j)=0,d_(j)为喷嘴当量直径);随着靶距H逐渐增大,Nu逐渐减小,旋流效果逐渐减弱。当H=2d_(j)、4d_(j)时,Nu最大值位于r/d_(j)=1处;当H=6d_(j)时,Nu最大值位于射流中心处。 Using ANSYS FLUENT software and RNG k-εturbulence model,the internal flow characteristics and coupling surface heat transfer characteristics of spiral nozzles with cross-shaped,inner cross-shaped and flower-shaped structures were studied respectively.The numerical results show that the smaller the helix angleθis,the higher the outlet velocity of the spiral nozzle is,the more concentrated the water flowing out of the nozzle is,and the clearer and more obvious the water movement track is.Under the same working condition,the heat transfer efficiency and heat transfer uniformity of flower-shaped nozzle with the helix angle 30°are higher than those of the two other nozzles.The maximum position of Nusselt number Nu of its coupling surface would gradually be away from the jet center(r/d_(j)=0,d_(j)is the equivalent diameter of nozzle)with the increase of Reynolds number Re.With the increase of target distance H,Nu gradually decreases and the swirling effect gradually weakens.When H=2d_(j),4d_(j),the maximum Nu is located at r/d_(j)=1,and when H=6d_(j),the maximum Nu is located at the jet center(r/d_(j)=0).
作者 刘萍 张蔓蔓 秦广进 郭榆生 LIU Ping;ZHANG Man-man;QIN Guang-jin;GUO Yu-sheng(School of Mechanical Engineering,Anhui University of Science and Technology,Huainan 232001)
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2022年第4期372-377,共6页 Nuclear Fusion and Plasma Physics
基金 国家自然科学基金(11805005)。
关键词 螺旋喷嘴 射流冷却 湍流模型 换热效率 Spiral nozzle Jet cooling Turbulence model Heat transfer efficiency
  • 相关文献

参考文献4

二级参考文献26

  • 1Ward J, Mahmood M. Heat transfer from a turbulent, swirling, impinging jet. Proceedings of the 7th International Heat Transfer Conference HTD-3, 1982.401-407.
  • 2Huang L, EI-Genk M S. Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. Int J Heat Mass Transfer, 1997, 41:583-600.
  • 3Wernet M P. Application of DPIV to study both steady state and transient turbomachinery flows. Optics & Laser Tech, 2000, 32:497-525.
  • 4Coleman H W, Steele W G. Experimentation and Uncertainty Analysis for Engineers. New York: John Wiley & Sons, 1999.
  • 5Maki I-I, Aida E, Akimoto K. Fundamental study on the annular impinging jet. Trans JSME(B), 1980, 46:1959-1966.
  • 6Downs S J, James E H. Jet impingement heat transfer: a literature survey. Proceedings of the National Heat Transfer Conference, ASME, Pennsylvania, PA, 1987.87-HT-35.
  • 7Jambunathan K, Lai E, Moss M A, et al. A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow, 1992, 13(2): 106-115.
  • 8Viskanta R. Heat transfer to impinging isothermal gas and flame jets. Exp Therm Fluid Sci, 1993, 6:111-134.
  • 9Polat S. Heat and mass transfer in impinging drying. Dry Tech, 1993, 11(6): 1147-1176.
  • 10Webb B W, Ma C F. Single-phase liquid jet impingement heat transfer. Adv Heat Transfer, 1995, 26:105-107.

共引文献8

同被引文献48

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部