摘要
风险源提取是实现饮用水源地遥感监测的重要技术环节。基于高分遥感的风险源提取的技术方法体系,研发了结合面向对象和深度学习技术的风险源提取方法并进行了软件实现。以图像分割为基础通过面向对象深度学习分类提取大尺度自然分险源,再利用语义分割提取各类人工分险源,实现了不同分险源的分级提取。依托相应软件系统,以高分二号影像为主要数据源,以南京市夹江水源地为示范区开展了风险源提取试验。结果表明系统实现了包括水源地水体分布,以及水体周边建筑物、道路、农、林等多类人工、自然风险源目标的准确提取。
Risk source extraction is an important technical step for remote sensing monitoring of drinking water sources.The research group builds up a technical framework for risk source extraction from high-spatial-resolution images by combining object-based image analysis(OBIA)and deep learning techniques.On the basis of image segmentation,the largescale natural risk sources are classified by object-based deep learning classification,and various artificial risk sources are extracted by semantic segmentation,so as to realize the hierarchical extraction of different risk sources.Experiments of risk source extraction at the Jiajiang water source area of Nanjing city were carried out based on GF-2 imagery.The software system accurately extracts the distribution of water bodies,and different kinds of artificial and natural risk sources including buildings,roads,agriculture and forest lands around water bodies.
作者
曹琪
郑雅兰
沈谦
汪闽
CAO Qi;ZHENG Yalan;SHEN Qian;WANG Min(School of Geography,Nanjing Normal University,Nanjing 210023,China;Key Laboratory of Virtual Geographic Environment(Nanjing Normal University),Ministry of Education,Nanjing 210023,China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China;State Key Laboratory Cultivation Base of Geographical Environment Evolution(Jiangsu Province),Nanjing 210023,China)
出处
《测绘地理信息》
CSCD
2022年第6期81-85,共5页
Journal of Geomatics
基金
国家重点研发计划(2017YFB0503902)
国家自然科学基金(41671341)
水污染控制与治理科技重大专项(2017ZX07302003)。
关键词
饮用水源地
风险源
面向对象图像分析
深度学习
语义分割
drinking water source
risk source
object-oriented image analysis
deep learning
semantic segmentation