期刊文献+

数据驱动的双通道CNN-LSTM调制分类算法 被引量:1

Data-driven Modulation Classification Algorithm Based on Dual-channel CNN-LSTM
下载PDF
导出
摘要 为同时利用卷积神经网络(Convolutional Neural Network, CNN)的空间特征提取能力和长短时记忆(Long Short-Term Memory, LSTM)网络的时序特征提取能力,提出了一种由双通道一维CNN与LSTM相互串联的调制分类算法。算法采用数据驱动的方式,直接将信号送入至2路CNN提取其在不同维度的空间特征信息;把2个通道的特征融合信息输入至LSTM学习其时序上的特征;与全连接网络连接实现对5种目标信号的调制分类。实验结果表明,CNN与LSTM相互串联能够学习到更加丰富的特征信息,更有利于分类;与传统方法相比,提出的方法无需人工提取信号特征,减少了预处理步骤并有效提升了识别性能。 To utilize the spatial feature extraction ability of Convolutional Neural Network(CNN) and the temporal feature extraction ability of Long Short-Term Memory(LSTM) network simultaneously, a modulation classification algorithm based on two-channel one-dimensional concatenated CNN and LSTM is proposed. Firstly, the proposed algorithm adopts the data-driven method and directly feeds signals to the two-channel CNN module to extract the spatial feature information in different dimensions. Then, the LSTM network is followed to learn temporal feature information from the CNN module. Finally, LSTM is connected with the fully-connected network to realize modulation classification of five target signals. Experimental results show that the concatenated structure of CNN and LSTM can learn richer feature information, which is more conducive to modulation classification. Compared with the traditional methods, the proposed method does not need to manually extract signal features, reduces the preprocessing steps and effectively improves recognition performance.
作者 葛战 孙磊 李兵 蒋鸿宇 周劼 GE Zhan;SUN Lei;LI Bing;JIANG Hongyu;ZHOU Jie(Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621900,China)
出处 《无线电工程》 北大核心 2023年第1期73-79,共7页 Radio Engineering
基金 国家自然科学基金委员会与中国工程物理研究院联合基金(NSAF)资助项目(U153010137)。
关键词 调制分类 数据驱动 卷积神经网络 长短时记忆网络 modulation classification data-driven CNN LSTM
  • 相关文献

参考文献5

二级参考文献31

  • 1Gong G W. Study of FCM algorithm on parmeters and its applications. Master's Thesis. Xi'an, China: Xidian University, 2004 (in Chinese).
  • 2Helmy M O, Zaki F W. Identification of linear bi-dimensional digital modulation schemes via clustering algorithms. Proceedings of the 2009 International Conference on Computer Engineering and Systems (ICCES'09), Dec 14-16, 2009, Cairo, Egypt. Piscataway, NJ, USA: IEEE, 2009:385-390.
  • 3Demuth H, Beale M. Neural network toolbox for MATLAB. Natick, MA, USA: The MathWorks lnc, 1997.
  • 4Dobre O A, Abdi A, Bar-Ness Y, et al. Survey of automatic modulation classification techniques: classical approaches and new trends. IET Communications, 2007, 1(2): 137-156.
  • 5Xu J, Su W, Zhou M. Likelihood function-based modulation classification in bandwidth-constrained sensor networks. Proceedings of the 2010 IEEE International Conference on Networking, Sensing and Control (ICNSC'10), Apr 10-13, 2010, Chicago, IL, USA. Piscataway, N J, USA: IEEE, 2010:530-533.
  • 6Chen M, Zhu Q. Cooperative automatic modulation recognition in cognitive radio. The Journal of China Universities of Posts and Telecommunications, 2010, 17(2): 4-52.
  • 7Wong M L D, Nandi A K. Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing, 2004, 84(2): 351-365.
  • 8Boutte D, Santhanam B. A feature weighted hybrid ICA-SVM approach to automatic modulation recognition. Proceedings of the 13thIEEE Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop (DSP/SPE'09), Jan 4-7, 2009, Marco Island, FL, USA. Piscataway, NJ, USA: IEEE, 2009:399-403.
  • 9Gong X J, Bian L, Zhu Q. Collaborative modulation recognition based on SVM. Proceedings of the 6th IEEE Conference on Natural Computation (ICNC'10), Aug 10-12, 2010, Yantai, China. Los Alamitos, CA, USA: IEEE Computer Society, 2010:871-874.
  • 10Ahmadi N, Berangi R. Modulation classification of QAM and PSK from their constellation using genetic algorithm and hierarchical clustering. Proceedings of the International Conference on Information and Communication Technologies: From Theory to Applications (ICTTA'08), Apr 7-11, 2008, Damascus, Syria. Piscataway, N J, USA: IEEE, 2008: 5p.

共引文献49

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部