期刊文献+

基于Faster-RCNN的IR-UWB穿墙雷达邻近多目标检测算法 被引量:1

Multiple Adjacent Targets Detection Algorithm for IR-UWB Through-wall Radar Based on Faster-RCNN
下载PDF
导出
摘要 针对超宽带冲激脉冲(Ultra-wideband Impulse Radio, IR-UWB)穿墙雷达邻近多目标精确检测难点,提出了一种基于Faster-RCNN的IR-UWB穿墙雷达邻近多目标检测算法。算法采用自适应预处理算法对雷达回波进行处理,凸显疑似目标图像域特征;采用Faster-RCNN网络对不同目标距离间隔下的邻近多目标进行分离检测;利用穿墙雷达实测数据与传统的恒虚警率(Constant False-Alarm Rate, CFAR)检测方法进行对比试验,结果表明该算法明显优于传统方法。 To overcome the difficulty of accurate detection of multiple adjacent targets by Ultra-wideband Impulse Radio(IR-UWB) through-wall radar, a multiple adjacent targets detection algorithm for IR-UWB through-wall radar based on Faster-RCNN is proposed. Firstly, the adaptive preprocessing algorithm is used to process the radar echo and highlight the image domain features of the suspected target. Secondly, the Faster-RCNN network is used to detect and separate multiple adjacent targets at different target distances. Finally, the algorithm is compared with the traditional Constant False-Alarm Rate(CFAR) detection method by using the measured data of the through-wall radar. The results show that the proposed algorithm is significantly better than the traditional method.
作者 赵思肖 梁步阁 杨德贵 熊明耀 ZHAO Sixiao;LIANG Buge;YANG Degui;XIONG Mingyao(School of Automation,Central South University,Changsha 410083,China)
出处 《无线电工程》 北大核心 2023年第1期80-86,共7页 Radio Engineering
基金 国家自然科学基金(62171475)。
关键词 超宽带 穿墙雷达 深度学习 多目标检测 快速区域卷积神经网络 UWB TWR deep learning multi-target detection Faster-RCNN
  • 相关文献

参考文献9

二级参考文献31

共引文献1842

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部