期刊文献+

An approach to viscoelastic c haracterization of dispersive media by inversion of a general wave propagation model

下载PDF
导出
摘要 In the characterization of elastic properties of tissue using dynarmic optical coherence elasto-graphy,shear/surface waves are propagated and tracked in order to estimate speed and Y oung's modulus.However,for dispersive tssues,the displacement pulse is highly damped and distorted during propagation,diminishing the ffectiveness of peak tracking approaches,and leading to biased cstimates of wave speed.Further,plane wave propagation is sometimes assumed,which contributes to estimation erors.Therefore,we invert a wave propagation model that incorpo-rates propagation,decay,and distortion of pulses in a dispersive media in order to accurately estimate its elastic and viscous components.The model uses a general first-order approximation of dispersion,avoiding the use of any particular rheological model of tisue.Experiments are conducted in elastic and viscoelastic tissue mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation and measuring the wave propagation using a Fourier domain optical coherence tomography system.Results confirmed the ffectiveness of the inversion method in est imat ing viscoelastic parameters in both the viscoelastic and elastic phantoms when compared to mechanical measurements.Finally,the viscoelastic characterization of a fresh porcine comea was conducted.Preliminary results validate this approach when compared to other methods.
出处 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第6期73-88,共16页 创新光学健康科学杂志(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部