期刊文献+

Entity and relation extraction with rule-guided dictionary as domain knowledge

原文传递
导出
摘要 Entity and relation extraction is an indispensable part of domain knowledge graph construction,which can serve relevant knowledge needs in a specific domain,such as providing support for product research,sales,risk control,and domain hotspot analysis.The existing entity and relation extraction methods that depend on pretrained models have shown promising performance on open datasets.However,the performance of these methods degrades when they face domain-specific datasets.Entity extraction models treat characters as basic semantic units while ignoring known character dependency in specific domains.Relation extraction is based on the hypothesis that the relations hidden in sentences are unified,thereby neglecting that relations may be diverse in different entity tuples.To address the problems above,this paper first introduced prior knowledge composed of domain dictionaries to enhance characters’dependence.Second,domain rules were built to eliminate noise in entity relations and promote potential entity relation extraction.Finally,experiments were designed to verify the effectiveness of our proposed methods.Experimental results on two domains,including laser industry and unmanned ship,showed the superiority of our methods.The F1 value on laser industry entity,unmanned ship entity,laser industry relation,and unmanned ship relation datasets is improved by+1%,+6%,+2%,and+1%,respectively.In addition,the extraction accuracy of entity relation triplet reaches 83%and 76%on laser industry entity pair and unmanned ship entity pair datasets,respectively.
出处 《Frontiers of Engineering Management》 2022年第4期610-622,共13页 工程管理前沿(英文版)
基金 This work is funded by the Shanghai Sailing Program(Grant No.20YF1413800) Military Medical Science and Technology Youth Cultivating Program(Grant No.20QNPY106) High Performance Computing Center of Shanghai University,and Shanghai Engineering Research Center of Intelligent Computing System(Grant No.19DZ2252600).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部