期刊文献+

Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications 被引量:1

原文传递
导出
摘要 MXene-based hydrogels have drawn considerable attention as flexible and wearable sensors.However,the application of MXene-based hydrogels after sensing failure has rarely been investigated,which is of great significance for expanding their engineering application.In this work,multifunctional mineral MXene hydrogels(MMHs)were synthesized via a simple method inspired by biomineralization.The prepared MMHs were stretchable,self-healable and conductive,and can be used to fabricate wearable tensile strain sensors showing a super-wide sensing range with excellent sensitivity.MMHs-based strain sensors were designed to be directly attached to the skin surface to detect tiny and large human motions.In addition,with the advantages of a large specific area,excellent hydrophilicity and abundant active adsorption sites for MXene nanosheets and hydrogels,dehydrated MMHs were used as highly efficient adsorbents for the removal of strontium ions from aqueous solutions.This work shows the great potential of MXene in promoting the development of nextgeneration functional materials.
出处 《Frontiers of physics》 SCIE CSCD 2022年第6期115-123,共9页 物理学前沿(英文版)
基金 supported by the Fundamental Research Funds for Central Universities and also supported by the National Key R&D Program of China(Grant No.2016YFC1402504).
  • 相关文献

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部