期刊文献+

Effect mechanism of nitrogen injection into fire-sealed-zone on residual-coal re-ignition under stress in goaf 被引量:1

下载PDF
导出
摘要 Coal is the one of foundations of energy and economic structure in China,while the unsealing of coal mine fres would cause a great risk of coal re-ignition.In order to explore the infuence of pressure-bearing state on the re-ignition characteristics for residual coal,the uniaxial compression equipped with a temperature-programmed device was built.The scanning electron microscope,synchronous thermal analyzer and Fourier transform infrared absorption spectrometer was applied to investigate the microscopic structure and thermal efect of the coal samples.Moreover,the microscopic efect of uniaxial stress on coal re-ignition is revealed,and the re-ignition mechanism is also obtained.As the uniaxial stress increasing,the number,depth and length of the fractures of the pre-treated coal increases.The application of uniaxial stress causes the thermal conductivity to change periodically,enhances the inhibition of injecting nitrogen on heat transfer and prolonges the duration of oxidation exothermic.The content of oxygen-containing functional groups has a high correlation with apparent activation energy,and coal samples at 6 MPa is more probability to re-ignite while the fre zone is unsealed.Uniaxial stress could control the re-ignition mechanism by changing the structure of fractures and pores.The side chains and functional groups of coal structure are easier to be broken by thermal-stress coupling.The higher the·OH content,the more difcult coal samples would be re-ignited.The research results would lay a solid theoretical foundation for the safe unsealing of closed fre-areas underground,tighten the common bond between the actual industry and the experimental theory in closed fre-areas underground,and provide the theoretical guidance for coal re-ignition preventing.
出处 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第5期138-149,共12页 国际煤炭科学技术学报(英文)
基金 funding provided by the National Natural Science Foundation of China(52074108 and 51874124) the Project supported by Fund for Creative Talents of Henan Colleges in China(22HASTIT012) the Key Science and Technology Program of Henan Province(212102310007) It also supported by the Scientifc Research Foundation of the Higher Education Institutions of Henan Province in China(22A620001).
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部