期刊文献+

融合气象要素时空特征的深度学习水文模型 被引量:14

Development of a spatiotemporal deep-learning-based hydrological model
下载PDF
导出
摘要 针对现有深度学习水文模型未能充分刻画气象要素空间特征的问题,本文基于主成分分析(PCA)方法提取气象要素空间特征,利用长短时记忆神经网络(LSTM)学习长时序过程规律,构建融合气象要素时空特性的深度学习水文模型PCA-LSTM。以黄河源区为研究区域,利用LSTM模型和物理水文模型THREW作为比对模型,基于高斯噪音法系统评估PCA-LSTM模型的适用性和鲁棒性。结果显示:PCA-LSTM模型径流模拟纳什效率系数为0.92,高于比对模型LSTM和THREW,表明模型具有较高的精度。研究结果可为流域高精度水文模拟提供参考。 Deep learning has been proven to show remarkable performance in hydrological modeling;however,the spatial features of meteorological data are rarely incorporated in current deep learning hydrological models.In this study,we propose a spatiotemporal DL-based hydrological model by coupling principal component analysis(PCA)and long short-term memory(LSTM).PCA and LSTM were used to capture the spatial characteristics of meteorological data and understand long-length temporal dynamics,respectively.We used the source region of the Yellow River to test the PCA-LSTM model and compared the results with those of LSTM-only and THREW models.The Gaussian noise method was also used to evaluate the robustness of the PCA-LSTM model.The proposed PCA-LSTM model showed better performance than THREW and LSTM models,with Nash-Sutcliffe efficiency coefficients of 0.92,underlining the potential of the PCA-LSTM model for hydrological modeling and prediction.
作者 李步 田富强 李钰坤 倪广恒 LI Bu;TIAN Fuqiang;LI Yukun;NI Guangheng(State Key Laboratory of Hydro science and Engineering,Tsinghua University,Beijing 100084,China)
出处 《水科学进展》 EI CAS CSCD 北大核心 2022年第6期904-913,共10页 Advances in Water Science
基金 国家重点研发计划资助项目(2018YFA0606002)。
关键词 水文模拟 物理水文模型 深度学习 长短时记忆神经网络 主成分分析 黄河源区 hydrological modelling physical-based hydrological model deep learning long short-term memory principal component analysis the source region of Yellow River
  • 相关文献

参考文献6

二级参考文献52

共引文献518

同被引文献245

引证文献14

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部