期刊文献+

基于内膜解耦控制的选煤厂浮选智能加药控制研究 被引量:1

Research on intelligent dosing control of coal processing plant flotation based on internal membrane decoupling control
下载PDF
导出
摘要 为改善煤泥浮选性能,提出一种内膜解耦控制方法。针对浮选过程多变量特点,将解耦控制和内膜控制结合,对浮选过程加药量进行优化,以提高系统响应速度和浮选性能。为评估所提方案,在选煤厂浮选加药实际生产场景中,使用该方法进行加药优化,验证了该方法的有效性。结果表明,该方法在控制浮选生产稳定和模型失配方面更具优势。 In order to improve the flotation performance, an internal membrane decoupling control method is proposed.The decoupling control and internal membrane control are combined to optimize the dosing rate of the flotation process to improve the system response and flotation performance for the multivariate characteristics of the flotation process.In the experimental part, to evaluate the performance of the proposed scheme, the method is used to optimize the dosing for the actual production scenario of flotation dosing in coal processing plants, and the effectiveness of the method is verified.The experimental results show that the method has better advantages in controlling flotation production stability and model mismatch.
作者 郑珊珊 ZHENG Shan-shan(Wuhan Design and Research Institute of China Coal Industry and Technology Group Co.Intelligent Coal Processing Institute of Automation,Wuhan,Hubei 430064,China)
出处 《煤炭加工与综合利用》 CAS 2023年第1期16-19,24,共5页 Coal Processing & Comprehensive Utilization
关键词 选煤厂 浮选 智能加药 内膜控制 解耦控制 研究 coal processing flotation dosing internal membrane control decoupling control
  • 相关文献

参考文献2

二级参考文献21

  • 1周靖林,王宏.输出概率密度函数的最优跟踪控制:均方根B-样条模型[J].控制理论与应用,2005,22(3):369-376. 被引量:5
  • 2潘笑,钟祎勍.基于IMC的PID控制器的设计实现[J].计算机仿真,2005,22(8):80-82. 被引量:11
  • 3李奇安,褚健.对角CARIMA模型多变量广义预测控制器系数直接算法[J].自动化学报,2007,33(1):59-65. 被引量:10
  • 4Moolman D W, Eksteen J J, Aldrich C, et al. The significance of flotation froth appearance for machine vision control[J]. International Journal of Mineral Processing, 1996, 48(3): 135-158.
  • 5Aldrich C, Marais C, Shean B J, et al. Online monitoring and control of froth flotation systems with machine vision: A review[J]. International Journal of Mineral Processing. 2010, 96(1/2/3/4): 1-13.
  • 6Yoon R H. The role of hydrodynamic and surface forces in bubble-particle interaction[J]. International Journal of Mineral Processing. 2000, 58(1/2/3/4): 129-143.
  • 7Nguyen A V, Phan C M, Evans G M. Effect of the bubble size on the dynamic adsorption of frothers and collectors in flotation[J]. International Journal of Mineral Processing, 2006, 79(1): 18-26.
  • 8Yang C H, Xu C H, Gui W H, et al. Application of high light removal and multivariate image analysis to color measurement of flotation bubble images[J]. Int J of Imaging Systems and Technology, 2009, 19(4): 316-322.
  • 9Xu C, Gui W, Yang C, et al. Flotation process fault detection using output PDF of bubble size distribution[J]. Minerals Engineering, 2012, 26: 5-12.
  • 10Liu J, Gui W, Tang Z, et al. Recognition of the operational statuses of reagent addition using dynamic bubble size distribution in copper flotation process[J]. Minerals Engineering, 2013, 45: 128-141.

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部