期刊文献+

收缩微流道中高分子溶液流动行为的数值模拟与实验

Numerical Simulation and Experiment on Flow Behavior of Polymer Solution in Contraction Microchannel
下载PDF
导出
摘要 利用实验与数值模拟相结合的方法,研究了质量分数为0.3%的聚氧化乙烯(PEO)水溶液在4:1收缩微流道中的流动行为。进行数值模拟时,借助有限元分析软件Polyflow,采用指数型Phan-Thien-Tanner(PTT)本构模型,分别对PEO水溶液在Weissenberg数分别为5.9,7.2,8.1和9.8时和在4:1直角收缩微流道、4:1圆弧过渡收缩微流道中的流变行为进行了模拟分析。结果显示,实验结果与数值模拟结果的吻合较好,表明PTT本构模型能够很好地预测PEO水溶液在4:1收缩微流道中的流变行为。此外,还讨论了Weissenberg数和流道的几何形状对微流动行为的影响,随着Weissenberg数的增大,PEO水溶液的流速、压力和应力也随之增大,而圆弧过渡收缩口可以有效地避免涡流流动,提高挤出流场的稳定性。 The flow behavior of polyethylene oxide(PEO)aqueous solution with the mass fraction of 0.30%in a4:1 contraction microchannel was studied by the experimental and numerical methods in this paper.With finite element analysis software Polyflow,the exponential Phan-Thien-Tanner(PTT)constitutive model was applied to simulate the flow behavior of the solution in 4:1 right angle contraction microchannel and 4:1 arc transition contraction microchannel at Weissenberg numbers of 5.9,7.2,8.1 and 9.8.The results show that the experimental results agree well with the numerical simulation results.It is proved that the PTT constitutive model can well predict the rheological behavior of PEO aqueous solution in 4:1 contraction microchannel.Furthermore,the influence of Weissenberg number and geometry of the channel on the microscale flow behavior was discussed.With the increase of Weissenberg number,the flow velocity,pressure and stress of PEO aqueous solution also increase,and the arc transition contraction port can effectively avoid vortex flow and improve the stability of extrusion flow field.
作者 王林林 王伟 Linlin Wang;Wei Wang(Key Laboratory of Rubber-Plastics,Ministry of Education//Shandong Provincial Key Laboratory of Rubber-Plastics,Qingdao University of Science and Technology,Qingdao 266042,China)
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2022年第12期71-77,84,共8页 Polymer Materials Science & Engineering
基金 山东省自然科学基金资助项目(ZR2018MEM022) 国家自然科学基金资助项目(21274072)。
关键词 聚氧化乙烯水溶液 收缩微流道 微流控实验 本构模型 数值模拟 polyethylene oxide aqueous solution contraction microchannel microfluidic experiment constitutive model numerical simulation
  • 相关文献

参考文献6

二级参考文献20

  • 1LANZILLOTTO A M,LEU T S,AMABILE M,et al.A study of structure and motion in fluidic Microsystems[R].AIAA Paper 97-1 790.
  • 2MEINHART C D,WERELEY S T,SANTIAGO J G.PIV measurements of a microchannel flow[J].Experiments in Fluids,1999,27:414-419.
  • 3CHEN Z,MILNER T E,DAVE D,et al.Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media[J].Opt.Lett.,1997(22):64-66.
  • 4SANTIAGO J G,WERELEY S T,MEINHART C D,et al.A particle image velocimetry system for microfluidics[J].Experiment in Fluids,1998(25):316-319.
  • 5L6pez-Aguilar J E, Webster M F, Tamaddon-Jahromi H R, et al. High-Weissenberg predictions for mieellar fluids in contraction- expansion flows[J]. J. Non-Newtonian Fluid Mech., 2015, 222: 190-208.
  • 6Tamaddon Jahromi H R, Webster M F, Williams P R. Excess pressure drop and drag calculations for strain-hardening fluids with mild shear-thinning: contraction and falling sphere pmblems[J ]. J. Non-Newtonian Fluid Mech., 2011, 166: 939-950.
  • 7Hassell D G, Auhl D, MeLeish T C B, et al. The effect of viscoelasticity on stress fields within polyethylene melt flow for across-slot and con silt geometry[J]. Rheol. Acta 2008, 47: 821-834.
  • 8Hassell D G, Lord T D, Scelsi L, et al. The effect of boundar) curvature on the stress response of linear and branched polyethylenes in a contraction-expansion flow[J]. Rheol. Acta, 2011, 50: 675- 689.
  • 9McLeish T, Larson R G. Molecular constitutive equations for a class of branched polymers: the Pom-Pom polymer[J]. J. Rheol. , 1998, 42: 81-110.
  • 10Clemeur N, Rutgers R P G, IDehbaut B. On the evaluation of some differential formulations for the Pom-Pom constitutive model [ J ]. Rheol. Aeta, 2003, 42: 217-231.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部