摘要
针对目前变压器故障数据采集系统中出现的故障诊断准确度不高的问题,采用电力设备数据采集实时系统来进行采集数据,再基于信息熵的概念上,对灰色关联度模型进行改进,最后构建出基于信息熵的灰色关联度故障诊断模型。通过对江苏海门供电公司双南变电站所提供的25组数据用此模型进行检验分析,得出了准确率较高的诊断结果。结果表明,基于信息熵改进的灰色关联度故障诊断模型在实际的故障监测中,与其余两种方法相比,所得出的故障诊断结果准确度更高,具有一定的应用价值。
As one of the important equipment in power system, the stable operation of power transformer is the guarantee of the stable operation of power system. In order to make the power system run smoothly, the transformer fault monitoring should be strengthened. The concept of information entropy and the mathematical formula solve the problem of the measurement of information dispersion, the uncertainty of the system can be accurately described, and the concept of information entropy can be used to flexibly realize the operation mode of the circuit, the on-line detection system of distribution transformer is constructed to realize on-line monitoring of all kinds of data and to analyze and determine whether the distribution transformer is working normally. The principle design of transformer on-line monitoring based on information entropy can collect the working data of power equipment, support the research of power equipment, analyze the fault and ensure the smooth operation of power system.
作者
周驰
周鑫
ZHOU Chi;ZHOU Xin(Nanjing NARUI Information&Communication Technology Co.,Ltd,Nanjing 211000,China)
出处
《自动化与仪器仪表》
2022年第11期241-246,共6页
Automation & Instrumentation
基金
国家电网公司科技项目(SGHE0000HBYB1522246)。
关键词
信息熵
电力设备
故障数据采集
变压器
information entropy
Power equipment
Fault data acquisition
transformer