期刊文献+

自旋相关光晶格中玻色-爱因斯坦凝聚体的基态

Ground State of Bose-Einstein Condensates in a Spin-dependent Optical Lattice
原文传递
导出
摘要 基于Gross-Pitaevskii方程数值研究自旋相关光晶格势和无限深势阱的联合势阱中玻色-爱因斯坦凝聚体的基态密度分布。重点讨论产生自旋相关光晶格势的两束激光传播方向和波数之比(?)对基态密度分布的影响。在两束激光的波数较小,两束光相向传播,且?<2时,两分量的基态密度条纹都是连续的,?≥2时,两分量的基态密度均出现不连续条纹。两束光垂直传播时,随着?的增大,组分1的基态密度从连续条纹逐渐转变为不连续条纹,组分2则正好相反。基态密度条纹数随着波数的增加而增多,但涡旋个数保持不变。 Based on Gross-Pitaevskii equation,we studied numerically ground-state density distribution of Bose-Einstein condensates trapped in a combined potential of a spin-dependent optical lattice potential and an infinite deep potential.We discuss specifically the influence of propagation directions and the ratio of wave numbers(?)of the two lasers,which produce the spin-dependent optical lattice on the ground-state of the Bose-Einstein condensate.As the wave number is small,two beams of light spread forward to each other.The two components exhibit continuous stripes with?<2.And with?≥2 both components show discontinuous stripes.As the two beams of light propagate vertically,with the increase of?,component 1 changes gradually from continuous to discontinuous stripes,and component 2 behaves oppositely.The number of ground state density fringes increases with the increase of wave number,while the number of vortices remains unchanged.
作者 吴丽媛 张素英 WU Liyuan;ZHANG Suying(Institute of Theoretical Physics,Shanxi University,Taiyuan,Shanxi 030006,China)
出处 《计算物理》 CSCD 北大核心 2022年第5期617-623,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11772177)资助项目。
关键词 自旋相关光晶格势 数值模拟 基态密度 spin-dependent optical lattice potential numerical simulation density of ground state
  • 相关文献

参考文献4

二级参考文献43

  • 1罗香怡,刘学深,丁培柱.立方非线性Schrdinger方程的动力学性质研究及其解模式的漂移[J].物理学报,2007,56(2):604-610. 被引量:8
  • 2A.L. Fetter, Rev. Mod. Phys. 81 (2009) 647.
  • 3M. Zwierlein, J. Abo-Shaeer, A. Schirotzek, C. Schunck, and W. Ketterle, Nature (London) 435 (2005) 1047.
  • 4P.M. Chaikin and T.C. Lubensky, Principles of Con- densed Matter Physics Cambridge University Press, Cam- bridge (2000).
  • 5C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge (2002).
  • 6G. Watanabe, S.A. Gifford, G. Baym, and C.J. Pethick, Phys. Rev. A 74 (2006) 063621.
  • 7K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. A 66 (2002) 053606.
  • 8M. Cozzini, B. Jackson, and S. Stringari, Phys. Rev. A 73 (2002) 013603.
  • 9U.R. Fischer and G. Baym, Phys. Rev. Lett. 90 (2003) 140402.
  • 10A.D. Jackson, G.M. Kavoulakis, and E. Lundh, Phys. Rev. A 69 (2004) 053619.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部