期刊文献+

基于环形电磁线圈的轮轨增压方案 被引量:1

Wheel-rail Pressurization Scheme Based on Electromagnetic Ring Coil
下载PDF
导出
摘要 针对列车制动时黏着力不足的问题,基于车轮结构和电磁学基本原理提出一种固定在转向架上的环形电磁线圈方案。该方案利用电磁线圈磁化车轮,使其对轨道产生垂向吸力以增加轴重。对所提方案设置内嵌环形线圈励磁模型和外置环形线圈励磁模型,并基于Ansoft Maxwell电磁场分析软件分析了两种模型的磁感应强度、垂向电磁吸力等参数。计算结果表明:在内嵌环形线圈励磁模型中,轮轨的增压效果不明显,其增加轴重的调节效果不显著;而在外置环形线圈模型中,轮轨接触位置产生了更稳定的励磁作用,轮轨处可获得较大的垂向电磁吸力,车轮增压效果明显。 Aiming at the problem of insufficient adhesion during train braking,based on the wheel structure and the basic principle of electromagnetism,a scheme of electromagnetic ring coil fixed on bogie is proposed.The scheme uses electromagnetic coil to magnetize the wheel,generating vertical attraction on the track to increase axle load.Embedded ring coil excitation model and external ring coil excitation model are set in the mentioned scheme,and parameters of the two models such as electromagnetic flux density and vertical electromagnetic adhesion are analyzed using Ansoft Maxwell electromagnetic field analysis software.Calculation results show that in the embedded ring coil excitation model,the pressurization effect on wheel-rail is not obvious,as well as the adjustment effect of axle load increase;while in the external ring coil model,more stable excitation has been produced on wheel-rail contact position,and the wheel-rail can obtain larger vertical electromagnetic attraction,demonstrating evident pressurization effect on the wheel.
作者 应之丁 李艺 桂安登 YING Zhiding;LI Yi;GUI Andeng(Institute of Rail Transit,Tongji University,201804,Shanghai,China)
出处 《城市轨道交通研究》 北大核心 2023年第1期210-213,共4页 Urban Mass Transit
关键词 轨道交通 轮轨增压 环形电磁线圈 轮轨关系 rail transit wheel-rail pressurization electromagnetic ring coil wheel-rail relationship
  • 相关文献

参考文献5

二级参考文献35

  • 1高嘉年.铁路轮轨润滑膜的减磨机理与应用[J].中国表面工程,1992,9(4):18-24. 被引量:2
  • 2周小擎.直流电磁铁的优化设计[J].华南理工大学学报(自然科学版),1994,22(5):138-146. 被引量:12
  • 3刘迎曦,张军.轮轨两点接触的有限元分析[J].机械工程学报,2005,41(11):121-126. 被引量:8
  • 4邹海峰.小型电磁继电器[M].西安:陕西科技出版社,1989..
  • 5CHEN Hua, BAN T, ISHIDA M, et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions [J]. Wear, 2008, 265:1504-1511.
  • 6CHEN Hua, ISHIDA M, NAKAHARA T. Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness [J]. Wear, 2005, 258:1209-1216.
  • 7ZHANG Weihua, CHEN Jianzheng, WU Xuejie, et al. Wheel/rail adhesion and analysis by using full scale roller rig [J]. Wear, 2002, 253:82-88.
  • 8LEWIS R, DWYER-JOYCE R S. Wear at the wheel/rail interface when sanding is used to increase adhesion [J]. Journal of Rail and Rapid Transit, 2005, 220:29-41.
  • 9KNOTHE K, GROSS-THEBING A. A derivation of frequency dependent creep coefficients based on an elastic half-space model [J]. Vehicle System Dynamics, 1986, 15:133-143.
  • 10BUCHER F, DMITRIEY A I, ERTZ M, et al. Multiscale simulation of dry friction in wheel/rail contact [J]. Wear, 2006, 261:874-884.

共引文献94

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部