期刊文献+

基于卷积神经网络的列车位置指纹定位算法研究 被引量:3

Study of Train Location Fingerprint Positioning Algorithm Based on Convolutional Neural Network
下载PDF
导出
摘要 针对高速铁路隧道环境下采用位置指纹定位时定位精度低的问题,提出将深度卷积神经网络应用于列车位置指纹的定位中。首先采用2σ准则、模糊C均值聚类FCM及类数据加权,对采集到的下一代铁路通信系统LTE-R中的信号强度值进行预处理,降低异常值的影响,提高指纹数据的有效性;然后引入定时提前量,增强指纹特征值;接着将处理后的指纹数据量转换为灰度图片指纹条,基于图像样本建立FCM-CNN指纹定位模型;最后以现场实测数据为基础对定位模型进行测试验证。结果表明,相较于采用未经处理的数据作为样本的CNN模型及传统的位置指纹定位方法,基于FCM-CNN的列车位置指纹定位方法,提高了数据质量,在离线阶段具有较大的指纹采集间距,大幅减少了指纹采集工作量,模型训练时间较短,定位精度小于10 m的概率可达100%,满足列车在中密度线路对定位精度的要求。 In response to the problem of low positioning accuracy when using location fingerprint under high-speed railway tunnel environment,deep convolutional neural network was applied to the positioning of train location fingerprint.Firstly,2σcriteria,FCM and class data weighting were used to preprocess the signal strength value in the next generation railway communication system LTE-R collected to reduce the influence of abnormal values and to improve the effectiveness of fingerprint data.Secondly,the timing advance was used to enhance the characteristic values of the fingerprints.Then the processed fingerprint data were converted into grayscale picture fingerprint strips,and an FCM-CNN fingerprint positioning model based on image samples was established.The test results based on the field data show that the FCM-CNN train position fingerprint model improves data quality,reduces the workload of fingerprint collection due to its larger fingerprint collection spacing in the offline stage,and shortens the training hours in comparison with the CNN model based on unprocessed data and some other conventional location fingerprint positioning methods.The probability of less than 10 m positioning accuracy can reach 100%,meeting the requirements for train positioning accuracy on medium density railways.
作者 罗淼 党建武 郝占军 张振海 LUO Miao;DANG Jianwu;HAO Zhanjun;ZHANG Zhenhai(School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Institute of Railway Technology,Lanzhou Jiaotong University,Lanzhou 730070,China;College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China;Gansu Province Internet of Things Engineering Research Center,Northwest Normal University,Lanzhou 730070,China)
出处 《铁道学报》 EI CAS CSCD 北大核心 2023年第1期42-50,共9页 Journal of the China Railway Society
基金 国家自然科学基金(61762079,61763025) 甘肃省科技计划(22JR5RA378,18JR3RA104)。
关键词 列车定位 模糊C均值聚类 卷积神经网络 参考信号接收功率 定时提前量 train positioning FCM convolutional neural network reference signal received power timing advance
  • 相关文献

参考文献9

二级参考文献35

  • 1孙汉武,王澜,戴贤春,穆恩生,刘敬辉.高速铁路地震紧急自动处置系统的研究[J].中国铁道科学,2007,28(5):121-127. 被引量:40
  • 2Ni L M,Liu Y,Lau Y C,et al.LANDMARC:indoor location sensing using active RFID[J].Wireless Network,2004,10(6):701-710.
  • 3Honkavirta V,Perala T,Ali-Loytty S,et al.A comparative survey of WLAN location fingerprinting methods[C]//6th Workshop on Navigation&Communication,2009:243-251.
  • 4Kaemarungsi K,Krishnamurthy P.Analysis of WLAN’s received signal strength indication for indoor location fingerprinting[J].Pervasive&Mobile Computing,2012,8(2):292-316.
  • 5Mautz R.Overview of current indoor positioning systems[J].Geodezijair Kartografija,2009,35(1):18-22.
  • 6Figuera C,Rojo-álvarez J L,Wilby M,et al.Advanced support vector machines for 802.11 indoor location[J].Signal Processing,2012,92(9):2126-2136.
  • 7Vapnik V,Vashist A.A new learning paradigm:learning using privileged information[J].Neural Networks,2009,22(5):544-557.
  • 8Ouyang R W,Wong A K S,Woo K T.Indoor localization via discriminatively regularized least square classification[J].International Journal of Wireless Information Networks,2011,18(2):57-72.
  • 9Sengur A.Multiclass least-squares support vector machines for analog modulation classification[J].Expert Systems with Applications,2009,36(3):6681-6685.
  • 10John S,Cristianini N.Kernel methods for pattern analysis[M].Cambridge:Cambridge University Press,2004.

共引文献77

同被引文献28

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部