期刊文献+

线形离子阱杂散电场漂移的测量与优化 被引量:1

Measurement and optimization of stray electric field shifts of linear ion trap
下载PDF
导出
摘要 在光频标的实验中,射频场所引入的微运动会对系统频率测量产生很大的误差。即使在实验前将微运动补偿至最佳状态,但实验过程中随着杂散电场的漂移,微运动的影响又会逐渐显现,需要不断地补偿才能减小其影响。针对该问题,在线形离子阱系统中利用氧化铟锡导电玻璃对真空系统进行优化,以抑制离子阱杂散电场的漂移。通过测量和计算得出优化后杂散电场漂移值为1.63µV·m^(−1)·s^(−1),约为优化前结果57.7µV·m^(−1)·s^(−1)的1/40,使得在长时间实验的过程中微运动的影响可以忽略不计,实验的有效时间得以显著增加。 Micromotion induced by radio-frequency(RF)field contributes greatly to the systematic frequency shifts of optical frequency standards(OFSs).Although the micromotion is compensated to the best degree before each experiment,the influence of micromotion will gradually appear with the shift of stray electric field during the experiment,which requires continuous compensation.To overcome this problem,indium tin oxide(ITO)conductive glass is used to optimize the vacuum system in linear ion trap system to restrain the shift of stray electric field.By measuring and calculating,the stray electric field shift is minimized to 1.63µV·m^(−1)·s^(−1),after optimization,which is around 1/40 of the previous work 57.7µV·m^(−1)·s^(−1),so that the influence of micromotion can be negligible during the long-time experiment,and the effective time of experiment can be significantly increased.
作者 王淼 陈正 黄垚 管桦 高克林 WANG Miao;CHEN Zheng;HUANG Yao;GUAN Hua;GAO Kelin(State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China;Key Laboratory of Atomic Frequency Standards,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《量子电子学报》 CAS CSCD 北大核心 2023年第1期127-132,共6页 Chinese Journal of Quantum Electronics
基金 国家重点研发计划(2018YFA0307500,2017YFA0304401) 国家自然科学基金(11634013,11774388)。
关键词 光频标 离子阱 导电玻璃 微运动 杂散电场漂移 optical frequency standard ion trap conductive glass micromotion stray electric field shift
  • 相关文献

参考文献1

二级参考文献47

  • 1Dehmelt H,Bull. Am. Phys. Soc., 1973,18:1521.
  • 2I Bergstrom Iet al. Nuc.lnstru.& Metho. Phys. Resear. A, 2002, 487:618.
  • 3Paul W, Steinwedel H. Zeitschrif~ f. Naturforschung A, 1953,8: 448.
  • 4Van Dyck Jr R et al. Phys. Rev. Lett., 1993,70: 2888.
  • 5Dehmelt H, Walls F. Phys. Rev. Lett., 1968,21: 127.
  • 6Wineland D, Ekstrom P, Dehmelt H. Phys. Rev. Lett., 1973,31: 1279.
  • 7Van Dyck Jr R, Schwinberg P, Dehmelt H. Phys. Rev. Lett., 1987, 59:26.
  • 8Schuessler H et al. Phys. Rev., 1969, 187:5.
  • 9Ghosh P. Ion Trap. Oxford: Clarendon Press, 1995.7.
  • 10Neuhaser Wet al. Phys. Rev. Lett., 1978,41: 233.

共引文献1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部