期刊文献+

深度学习在膀胱癌病理学中的研究进展 被引量:1

Research Progress of Deep Learning in Bladder Cancer Pathology
下载PDF
导出
摘要 膀胱癌的发病率逐年上升,其诊断的金标准依赖于组织病理活检。全载玻片数字化技术可产生大量高分辨率捕获的病理图像,促进了数字病理学的发展。随着人工智能的热潮掀起,深度学习作为人工智能的一种新方法,已经在膀胱癌的肿瘤诊断、分子分型、预测预后和复发等病理图像分析中取得了显著成果。传统病理极度依赖于病理学家的专业水平和经验储备,主观性强且可重复性差。深度学习以其自动提取图像特征的能力,在辅助病理学家进行决策时,可提高诊断效率和可重复性,降低漏诊和误诊率。这不仅能缓解目前面临人才短缺和医疗资源不均的压力,而且也能促进精准医疗的发展。本文就深度学习在膀胱癌病理图像分析中的最新研究进展和前景作一述评。 The incidence of bladder cancer is increasing annually,and the gold standard for its diagnosis relies on histopathological biopsy.Whole-slide digitization technology can produce thousands of high-resolution captured pathological images and has greatly promoted the development of digital pathology.Deep learning,as a new method of artificial intelligence,has achieved remarkable results in the analysis of pathological images for tumor diagnosis,molecular typing,and prediction of prognosis and recurrence of bladder cancer.Traditional pathology relies heavily on the professional level and experience of pathologists;as such,it is highly subjective and has poor reproducibility.Deep learning can automatically extract image features.It can also improve diagnostic efficiency and repeatability and reduce missed and misdiagnosed rates when used to assist pathologists in making decisions.This technology cannot only alleviate the pressure of the current shortage of skilled workforce and uneven medical resources but also promote the development of precision medicine.This article reviews the latest research progress and prospects of deep learning in pathological image analysis of bladder cancer.
作者 郑庆源 杨瑞 王磊 陈志远 刘修恒 ZHENG Qingyuan;YANG Rui;WANG Lei;CHEN Zhiyuan;LIU Xiuheng(Department of Urology,Renmin Hospital of Wuhan University,Wuhan 430060,China)
出处 《肿瘤防治研究》 CAS 2023年第1期98-102,共5页 Cancer Research on Prevention and Treatment
基金 湖北省重点研发计划项目(2020BCB051) 湖北省中央引导地方科技发展专项(ZYYD2022000181) 全国医学教育发展中心医学模拟教育研究项目(2021MNYB11)。
关键词 人工智能 深度学习 膀胱癌 病理图像 数字病理学 精准医疗 Artificial intelligence Deep learning Bladder cancer Pathological images Digital pathology Precision medicine
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部