期刊文献+

Progress and perspectives on two-dimensional silicon anodes for lithium-ion batteries 被引量:1

原文传递
导出
摘要 Silicon(Si)anodes with extremely high theoretical capacities are considered indispensable for next-generation high-energy lithium-ion batteries(LIBs).However,several intractable problems,including pulverization,poor electrical contact,and continuous side reactions caused by the large volume change of Si during lithia-tion/delithiation,lead to a short cycle life and poor rate capability,thus hindering the commercial use of Si anodes in LIBs.Two-dimensional(2D)Si with a unique graphene-like structure has a short ion diffusion path-way,small volume change during lithiation,and efficient redox site utilization,making it more promising than bulk Si or Si with other versatile structures for use in LIBs.Theoretical analysis demonstrated that the low energy barrier on the surface of 2D Si accelerates the transport of Li+.However,the issues surrounding 2D Si,includ-ing the tedious and user-unfriendly synthesis,ease of restacking,and atmospheric sensitivity,limit its practical applications,which are discussed in this review.Furthermore,possible solutions to these remaining challenges and new directions are provided,with the aim of designing practical and high-performance 2D Si anodes for next-generation LIBs.
出处 《ChemPhysMater》 2023年第1期1-19,共19页 化学物理材料(英文)
基金 National Natural Science Foundation of China(No.51902188) Natural Science Foundation of Jiangsu Province(No.BK20190207) Natural Science Doctoral Foundation of Shandong Province(No.ZR2019BEM019) the Future Program for Young Scholar of Shandong University.
  • 相关文献

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部