摘要
讨论了一类带有分数阶导数边值条件的分数阶微分方程■其中,D^(v)_(0+)是Rimann-Liouvile分数阶导数,η_(i)∈(0,1), 0<η_(1)<η_(2)<…<η_(m-2)<1, β_(i)∈[0,∞)。文中给出其格林函数及相关性质,运用凸泛函上的不动点指数定理来计算不动点指数,从而得到了上述边值问题至少存在一个正解的结论。最后通过一个例子说明定理的具体应用。
The existence of positive solutions for the fractional differential equation with fractional differential boundary value condition ■is considered under some conditions, where D^(v)_(0+) is Rimann-Liouvile fractional differential, η_(i)∈(0,1), 0<η_(1)<η_(2)<…<η_(m-2)<1, β_(i)∈[0,∞). Firstly, the Green function for the above fractional differential equation is constructed. The properties of the Green’s function are obtained. Secondly, by using the fixed point index theorem on convex functional to calculate the fixed point index, the conclusion that there is at least one positive solution to the above boundary value problem is obtained. Finally, an example is given to illustrate the application of the main theorem.
作者
赵微
高扬
ZHAO Wei;GAO Yang(Department of Mathematics,Daqing Normal University,Daqing 163712,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2022年第6期95-101,共7页
Journal of South China Normal University(Natural Science Edition)
基金
黑龙江省自然科学基金项目(LH2020A017)。
关键词
分数阶微分方程
分数阶边值条件
格林函数
凸泛函
不动点指数
fractional differential equation
fractional differential boundary value condition
Green function
convex functional
fixed point index