期刊文献+

Multi-scale analysis of void evolution in large-section plastic mold steel during multi-directional forging

原文传递
导出
摘要 The void evolution of large-section plastic mold steel during multi-directional forging(MDF)was investigated using multiscale analysis.To simulate the forging process of the plastic mold steel(SDP1 steel)and realize micro-void reconstruction in a representative volume element(RVE),MDF experiment and void-characteristic evaluation of the SDP1 steel were carried out.Traditional upsetting and stretching forging(TUSF)and MDF were simulated to comparatively analyze the evolution of temperature,effective stress,and effective strain.By embedding RVE with a micro-void and using boundary condition by point tracking into the forging process,the single-void evolution in TUSF and MDF was studied.The effect of void orientation on single-void evolution was also investigated.The multi-scale analysis revealed the following results.(1)Compared with TUSF,MDF achieved a higher efficiency in void closure.(2)The closing efficiency of the void increased with the increase in angle h(the angle between the Z and long axes of the void).(3)The closing efficiency increased with the increase in the orientation angle during the forging process.On the basis of the important role of the main stress in each forging step on the void closure,an integral formula of the main stress was proposed.When main compressive-stress integration reached-0.4,the closed state of the void could be accurately determined.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2022年第12期1961-1977,共17页 钢铁研究学报(英文版)
基金 This work is supported by National KeyR&D Program of China(Gran Nt oS.2016YFB0300400 and 2016YFB0300404).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部