期刊文献+

Extracellular vesicles as a potential therapeutic for age-related macular degeneration

下载PDF
导出
摘要 Age-related macular degeneration is a major global cause of central visual impairment and seve re vision loss.With an aging population,the already immense economic burden of costly anti-vascular endothelial growth fa ctor treatment is likely to increase.In addition,current conventional treatment is only available for the late neovascular stage of age-related macular degeneration,and injections can come with potentially devastating complications,introducing the need for more economical and ris kfree treatment.In recent years,exosomes,which are nano-sized extracellular vesicles of an endocytic origin,have shown immense potential as diagnostic biomarkers and in the therapeutic application,as they are bestowed with characte ristics including an expansive cargo that closely resembles their parent cell and exceptional ability of intercellular communication and targeting neighboring cells.Exosomes are currently undergoing clinical trials for various conditions such as type 1 diabetes and autoimmune diseases;however,exosomes as a potential therapy for seve ral retinal diseases have just begun to undergo scrutinizing investigation with little literature on age-related macular degeneration specifically.This article will focus on the limited literature availa ble on exosome transplantation treatment in age-related macular degeneration animal models and in vitro cell cultures,as well as briefly identify future research directions.Current literature on exosome therapy using agerelated macular degeneration rodent models includes laser retinal injury,N-methyl-N-nitrosourea,and royal college of surgeon models,which mimic inflammatory and degenerative aspects of agerelated macular degeneration.These have shown promising results in preserving retinal function and morphology,as well as protecting photoreceptors from apoptosis.Exosomes from their respective cellular origins may also act by regulating the expression of various inflammatory cyto kines,mRNAs,and proteins involved in photo receptor degeneration pathways to exert a therapeutic effect.Various findings have also opened exciting prospects for the involvement of cargo components in remedial effects on the damaged macula or retina.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1876-1880,共5页 中国神经再生研究(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部