期刊文献+

模型与数据双驱动的锂电池状态精准估计 被引量:3

Integrating model-and data-driven methods for accurate state estimation of lithium-ion batteries
下载PDF
导出
摘要 针对电池荷电状态估计常用的模型驱动法与数据驱动法的缺点,本工作提出了一种模型与数据双驱动的锂电池状态精准估计算法。在建立经典二阶电池模型后,先使用扩展卡尔曼滤波器与无迹卡尔曼滤波器组成的双卡尔曼滤波器进行初步的锂电池系统状态估测,再将初步的估算结果输入LSTM神经网络实现误差纠正,得到最终估测结果。本工作利用来自NASA PCoE的电池数据集对单驱动算法和双驱动算法分别进行了性能测试,结果表明双驱动法在降低了估算系统对数据依赖性的同时提高了估算精度以及算法鲁棒性,结合了两种单驱动法的优点并弥补了各自的缺点,得到了较为优异的结果。 Addressing the inadequacies of the conventional model-and data-driven methods,an integrating strategy combining both methods, for accurate state estimation of lithium-ion batteries is proposed for estimating battery state-of-charge. After establishing the classical second-order battery model, a dual-Kalman filter, composed of an extended Kalman filter and an unscented Kalman filter, was used to estimate the status of the lithium battery system preliminarily. Then, the preliminary estimation results were input into the LSTM neural network to correct the errors and complete the data-driven part. Datasets from NASA PCoE were used to test the performance of the single-and dual-driven methods. Results show that the integrating method reduces the dependence of the estimation system on the data while improving the estimation accuracy and robustness because it combines the advantages of the model-and data-driven methods and makes up for their shortcomings. Satisfactory results were obtained.
作者 陈清炀 何映晖 余官定 刘铭扬 徐翀 李振明 CHEN Qingyang;HE Yinghui;YU Guanding;LIU Mingyang;XU Chong;LI Zhenming(College of Information and Electronic Engineering,Zhejiang University,Hangzhou 310058,Zhejiang,China;Energy Storage and Novel Technology of Electrical Engineering Department,China Electric Power Research Institute Co.,Ltd.,Beijing 100192,China)
出处 《储能科学与技术》 CAS CSCD 北大核心 2023年第1期209-217,共9页 Energy Storage Science and Technology
基金 国家电网有限公司“储能锂离子电池智能监测技术研究”科技项目(5500-202255364A-2-0-ZN)。
关键词 锂电池 电池荷电状态 电池健康状态 模型驱动法 数据驱动法 扩展卡尔曼滤波 无迹卡尔曼滤波 LSTM神经网络 lithium battery state of charge state of health model-driven method data-driven method extended Kalman filter unscented Kalman filter long-short-term neural network
  • 相关文献

参考文献4

二级参考文献29

  • 1陈全世,林拥军,张东民.电动汽车用铅酸电池放电特性的研究[J].汽车技术,1996(8):7-11. 被引量:24
  • 2Morio K,Kazuhiro H,Anil P.Battery SOC and distance to empty of the Honda EV Plus[A].Proceedings of the 14th International Electric Vehicle Symposium[C].1997.
  • 3James H A,Alfred T,Barry W J.A battery state of charge indicator for electric wheelchairs[ A].IEEE Transactions on Industrial Electronics[C].1992.10.
  • 4Huet F.A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries [ J ].J Power Sources,1998,70( 1 ):59-69.
  • 5Ehret C,Piller S,Schroer W,et al.State-of-charge determination for Iead-acid batteries in PV-applications[ A].Proceedings of the 16 th European Photovoltaic Solar Energy Conference[ C ].Glasgow:2000.
  • 6Tsutomu Y,Kazuaki S,Ken-Ichiro M.Estimation of the residual capacity of sealed lead-acid batteries by neural network[A].Telecommunications Energy Conference,INTELEC,20th International[ C].1998.210-214.
  • 7Gregory L P.Kalman-filter SOC estimation for LIB cells[A].Proceedings of the 19th International Electric Vehicle Symposium [ C].2002.
  • 8Sabine P,Marion P,Andrees J.Methods for state-of-charge determination and their applications[ J ].J Power Sources,2001,96 ( 1 ):113-120.
  • 9Jaagul L,Soonjae L,Namgoong E.Dynamic state battery model with self-adaptive aging factor for EV and HEV applications [A].Proceedings of the 15th International Electric Vehicle Symposium [C].1998.
  • 10Languang Lu,Xuebing Han,Jianqiu Li,Jianfeng Hua,Minggao Ouyang.A review on the key issues for lithium-ion battery management in electric vehicles[J].Journal of Power Sources.2013

共引文献325

同被引文献38

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部