摘要
为了更深入地探索基于铯里德堡原子的太赫兹新探测技术,通过仿真模拟研究了在四能级里德堡原子模型下,其原子跃迁后的辐射寿命以及不同跃迁模式下(S_(1/2)→P_(3/2)、D_(5/2)→P_(1/2)、D_(5/2)→P_(3/2))的系统散粒噪声限制灵敏度。仿真结果表明,原子跃迁后的辐射寿命会随着其能级主量子数的增大而增加;且在模型3种跃迁模式中,S_(1/2)→P_(3/2)的原子辐射寿命较其他两种跃迁模式短。对于散粒噪声限制灵敏度方面,探究发现D_(5/2)→P_(1/2)的跃迁模式下灵敏度数值最小,即该跃迁模式下系统的探测灵敏度最高。该结论为基于里德堡原子太赫兹探测技术提供了参考,使其对生物、材料领域的微弱信号的探测奠定了基础。
In order to further explore the new detection technology of terahertz based on cesium Rydberg atom, we studied the radiation lifetime after atomic transition and the sensitivity of system noise limitation under different transition modes(S_(1/2)→P_(3/2)、 D_(5/2)→P_(1/2)、 D_(5/2)→P_(3/2)) using simulation under four-level Rydberg atomic model. The simulation results show that the atomic radiation lifetime after transition increases with the increase of its energy level principal quantum number. Among the three transition modes of the model, the atomic radiation lifetime of S_(1/2)→P_(3/2)is shorter than the other two transition modes. For the shot noise limited sensitivity, the sensitivity value of D_(5/2)→P_(1/2) transition mode is the smallest, that is, the detection sensitivity of the system will be the highest in this transition mode. This conclusion provides a reference for the Redburg atomic terahertz detection technology and lays a foundation for weak signal detection in the field of biology and materials.
作者
周彦臣
ZHOU Yanchen(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《光学仪器》
2022年第6期60-65,共6页
Optical Instruments