摘要
通过氢谱核磁共振技术检测并分析大豆油煎炸时的氧化产物,经主成分分析后确定Z,E-共轭结构、E,E-共轭结构、直链饱和醛、(E,E)-2,4-二烯醛、(E)-2-烯醛5种特征基团作为特征矩阵,采用岭回归算法构建了煎炸油同时检测过氧化值与极性组分的快速预测模型,结果表明,交叉验证下正则化参数α为0.077,过氧化值与极性组分模型的决定系数(R2)分别为0.968与0.957,均方根残差(RMSE)分别为0.208与5.249,经重现性检验,预测值与国标值相对标准偏差小于5%,说明预测法重现性和精度良好。同时,采用两种方法检测时没有显著性差异,说明基于氢谱核磁共振和机器学习算法联用,构建氧化指标的预测模型,可为煎炸油品质监测指标提供一种新思路。
Oxidation products of soybean oil during frying are detected and analyzed by ^(1)H nuclear magnetic resonance(^(1)H NMR) spectroscopy. After principal component analysis, five characteristic groups(Z,E-conjugated structure, E,E-conjugated structure, linear saturated aldehyde,(E,E)-2,4-dialdehyde,(E)-2-enaldehyde) are determined as the characteristic matrix. A fast prediction model for simultaneous detection of peroxide value and polar components in frying oil is established by ridge regression algorithm. The results show that under cross validation, the regularization parameter α is 0.077, the determination coefficients(R^(2)) of peroxide value and polar component model are 0.968 and 0.957 respectively, and the root mean square residuals(RMSE) are 0.208 and 5.249 respectively. Through the reproducibility test, the relative standard deviation between the predicted value and the national standard value is less than 5%, indicating that the prediction method has good reproducibility and precision. At the same time, there is no significant difference when using the two methods, which shows that the prediction model of oxidation index based on the combination of ^(1)H NMR and machine learning algorithm can provide a new idea for the quality monitoring index of frying oil.
作者
荣菡
游杰舜
甘露菁
黄茜楠
林小凤
RONG Han;YOU Jie-shun;GAN Lu-jing;HUANG Qian-nan;LIN Xiao-feng(School of Materials and Environment,Beijing Institute of Technology,Zhuhai,Zhuhai 519088,China;School of Applied Science and Civil Engineering,Beijing Institute of Technology,Zhuhai,Zhuhai 519088,China)
出处
《中国调味品》
CAS
北大核心
2023年第2期9-14,共6页
China Condiment
基金
广东高校省级重点平台项目特色创新类(2019KTSCX219)
2021广东省省级大学生创新创业训练计划项目(202108762104)。
关键词
氢谱核磁共振
岭回归
煎炸油
氧化指标预测
^(1)H nuclear magnetic resonance
ridge regression
frying oil
oxidation index prediction