摘要
为考察厌氧氨氧化反应器快速启动效果和脱氮性能,按照3∶1的体积比接种厌氧池厌氧污泥和氧化沟好氧污泥,运行77 d成功启动厌氧氨氧化反应。启动过程中反应器内污泥由黑色变为棕黄色最终变为红棕色,并逐渐颗粒化。采用高通量测序技术对启动成功后的厌氧氨氧化颗粒污泥进行微生物群落结构分析,发现主要菌门为:浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)和酸杆菌门(Acidobacteria),其中浮霉菌门(Planctomycetes)相对丰度最大,占比41.98%。厌氧氨氧化菌(AnAOB)的优势菌属为Candidatus_Brocadia属,占比为38.78%。反应器稳定运行阶段NH_(4)^(+)-N和NO_(2)^(-)-N平均去除率分别达到97.00%和98.58%,TN平均去除率及TN平均去除负荷分别达到81.57%和0.14 g/(L·d),化学计量比Δn(NH_(4)^(+)-N)∶Δn(NO_(2)^(-)-N)∶Δn(NO_(3)^(-)-N)为1∶1.30∶0.32。试验结果表明,接种厌氧和好氧混合污泥可实现厌氧氨氧化反应器带氧快速启动。
In order to investigate the fast start-up and nitrogen removal performance of anammox reactor,anaerobic sludge and aerobic sludge with a volume ratio of 3∶1 were inoculate in anaerobic tank and oxidation ditch respectively,and the anammox reactor was successfully started after 77 days of operation.During the start-up process,the color of the sludge in the reactor changed from black to brownish-yellow and finally to reddish-brown,the sludge was gradually granulated.The microbial community structure of the anaerobic ammonia oxidation granular sludge after successful start-up was analyzed by high-throughput sequencing technology.It was found that the main bacteria were:planctomycotes,proteobacteria,chloroflexi,bacteroidetes and acidobacteria,among which,planctomycetes had the largest relative abundance,accounting for 41.98%.the dominant genus of anaerobic ammonia oxidizing bacteria(AnAOB)was candidates_Brocadia,accounting for 38.78%.During the reactor stabilization stage,the average removal rates of NH_(4)^(+)-N and NO_(2)^(-)-N were 97.00%and 98.58%respectively,the average removal rate and average removal load of TN reached 81.57%and 0.14 g/(L·d)respectively,the value of Δn(NH_(4)^(+)-N)∶Δn(NO_(2)^(-)-N)∶Δn(NO_(3)^(-)N)was 1:1.30:0.32.The experimental results showed that,rapid start-up of anammox reactor with oxygen could be achieved by inoculating anaerobic and aerobic mixed sludge.
作者
孙鑫
薛同站
李卫华
刘晓吉
王坤
闫祥宇
SUN Xin;XUE Tongzhan;LI Weihua;LIU Xiaoji;WANG Kun;YAN Xiangyu(School of Environment and Energy Engineering,Anhui Jianzhu University,Hefei 230601,China;Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Resource Utilization,Hefei 230601,China;China Energy Conservation(Feixi)Environmental Protection Energy Co.,Ltd.,Hefei 230022,China)
出处
《工业用水与废水》
CAS
2022年第6期21-27,共7页
Industrial Water & Wastewater
基金
国家自然科学基金资助项目(51978003)
国家重点研发项目(2020YFC1908600)
安徽高校自然科学研究项目(KJ2020A0469)
环境污染控制与废弃物资源化利用安徽省重点实验室主任基金项目(2020EPC01)
横向委托项目(HYB2021081)。