期刊文献+

基于Masreliez-Martin的鲁棒分数阶容积卡尔曼滤波算法及应用 被引量:2

Masreliez-Martin method based robust fractional cubature Kalman filtering algorithm and its applications
下载PDF
导出
摘要 针对具有非高斯量测噪声的分数阶离散时间非线性系统的状态估计问题,提出一种基于Masreliez-Martin(简称为M-M)方法的鲁棒分数阶容积卡尔曼滤波器。在分数阶离散非线性动态系统基础上,使用三阶容积原则推导了状态预测公式,并使用M-M方法实现状态的量测更新,构成了基于M-M方法的鲁棒分数阶容积卡尔曼跟踪算法。将提出的算法应用到再入目标的状态估计中,仿真结果表明,基于M-M方法的鲁棒分数阶容积卡尔曼滤波器优于分数阶无迹滤波器和分数阶容积卡尔曼滤波器。最后,分析了不同程度的量测污染噪声对鲁棒分数阶容积卡尔曼滤波算法的估计性能影响,验证了所提算法的鲁棒性。 Aiming at the state estimation problem of discrete fractional-order nonlinear system with non-Gaussian measurement noise,a robust fractional-order cubature Kalman filter based on the Masreliez-Martin(M-M)method is proposed.Using the third-order cubature rule to derive the state prediction and refining the measurement update using M-M method,the M-M method based robust fractional cubature Kalman filter for the fractional discrete nonlinear dynamic system is derived.The proposed algorithm is applied to state estimation of the re-entry ballistic target.The simulation results show that the M-M method based robust fractional cubature Kalman filter is better than the fractional unscented filter and fractional cubature Kalman filter.Finally,the influence of contaminated measurement noise on the estimation performance of the M-M based robust fractional cubature Kalman filter algorithm is analyzed,and the results show that the proposed algorithm has good effectiveness and robustness.
作者 穆静 严东升 蔡远利 王长元 MU Jing;YAN Dongsheng;CAI Yuanli;WANG Changyuan(School of Computer and Science Engineering,Xi’an Technology University,Xi’an 710021,China;Beijing Institute of Space Long March Vehicle,Beijing 100076,China;Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2023年第1期234-240,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(62177037,52072293)资助课题。
关键词 分数阶微积分 容积卡尔曼滤波器 状态估计 Masreliez-Martin方法 fractional calculus cubature Kalman filter(CKF) state estimation Masreliez-Martin(M-M)method
  • 相关文献

参考文献6

二级参考文献71

  • 1Sierociuk D and Dzielinski A. Fractional Kalman filter algorithm for states, parameters and order of fractional system estimation[J]. International Journal of Applied Mathematics and Computer Science, 2006, 16(1): 129-140.
  • 2Sierociuk D, Tejado I, and Vinagre B M. Improved fractional Kalman filter and its application to estimation over lossy networks[J]. Signal Processing, 2011, 91(3): 542-552.
  • 3Vinagre B M, Monje C A, and CalderSn A J. Fractional order systems and fractional order control actions[C]. Lecture 3 of the IEEE CDC02 TW#02: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, USA, 2002: 1-23.
  • 4Cois O, Oustaloup A, Battaglia E, et al. Non integer model from modal decomposition for time domain system identification[C]. Proceedings of Symposium on System Identification, California, USA, 2000, 3: 989-994.
  • 5Cois O, Oustaloup A, Poinot T, et al. Fractional state variable filter for system identification by fractional model[C] http: / /mechatronics.ece.usu.edu/focO2tw /cdrom/LectureS/ ECC2001-System Identification.pdf.
  • 6Kownacki C. Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals' filtering[J]. Digital Signal Processing, 2011, 21(1): 131-140.
  • 7Han S. A closed-form solution to the discrete-time Kalman filter and its applications[J]. Systems ~ Control Letters, 2010, 59(12): 799-805.
  • 8Inglesi-Lotz R. The evolution of price elasticity of electricity demand in South Africa: a Kalman filter application[J]. Energy Policy, 2011, 39(6): 3690-3696.
  • 9Tcgersen F A, Skjoth F, Munksgaard L, et al.. Wireless indoor tracking network based on Kalman filters with an application to monitoring dairy cows[J]. Computers and Electronics in Agriculture, 2010, 72(2): 119-126.
  • 10Julier S J and Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.

共引文献45

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部