期刊文献+

A SPX domain vacuolar transporter links phosphate sensing to homeostasis in Arabidopsis 被引量:1

原文传递
导出
摘要 Excess phosphate(Pi)is stored into the vacuole through Pi transporters so that cytoplasmic Pi levels remain stable in plant cells.We hypothesized that the vacuolar Pi transporters may harbor a Pi-sensing mechanism so that they are activated to deliver Pi into the vacuole only when cytosolic Pi reaches a threshold high level.We tested this hypothesis using Vacuolar Phosphate Transporter 1(VPT1),a SPX domain-containing vacuolar Pi transporter,as a model.Recent studies have defined SPX as a Pi-sensing module that binds inositol polyphosphate signaling molecules(InsPs)produced at high cellular Pi status.We showed here that Pi-deficient conditions or mutation of the SPX domain severely impaired the transport activity of VPT1.We further identified an auto-inhibitory domain in VPT1 that suppresses its transport activity.Taking together the results from detailed structure-function analyses,our study suggests that VPT1 is in the auto-inhibitory state when Pi status is low,whereas at high cellular Pi status InsPs are produced and bind SPX domain to switch on VPT1 activity to deliver Pi into the vacuole.This thus provides an auto-regulatory mechanism for VPT1-mediated Pi sensing and homeostasis in plant cells.
出处 《Molecular Plant》 SCIE CAS CSCD 2022年第10期1590-1601,共12页 分子植物(英文版)
基金 the China Postdoctoral Science Foundation 2020M683537(to M.L) National Natural Science Foundation of China 32200216(to M.L) the National Science Foundation MCB 2041585(to S.L).
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部