期刊文献+

不规则三杆张拉整体结构的找形

Form-finding of irregular three-bar tensegrity structures
下载PDF
导出
摘要 为了获得不规则形态的张拉整体结构,本文提出了一种确定稳定构型的思路,即基于规则张拉整体结构在大部分构件长度不变的条件下,在一定范围内改变其个别构件长度,稳定状态时这些构件的长度最小。通过规则张拉整体结构单元稳定条件分析、非规则三杆张拉整体结构的稳定构型分析、求解思路分析几个方面的研究,获得了具体的构型方法,并通过具体数值求解、仿真分析和搭建实物模型等手段对此方法的正确性进行了验证,证明此方法求得的结构稳态数值的精度较高。为张拉整体结构基于构件变化的找形及机构化分析提供了一种思路。 To get a tensegrity structure with irregular form,we propose a new idea to determine the stable configuration.It is based on a regular tensegrity structure,under the condition that most of the members’length is unchanged,with the length of few members changing in a certain range and the length of these members minimized in the stable state.By analyses of stability conditions of regular tensegrity structure elements,stable configuration of irregular three-bar tensegrity structure,and solution ideas,a specific configuration method is obtained,and the correctness of the method is verified by numerical solution,simulation analysis and building a real model.It is proved that the steady-state value obtained by this method has higher precision,providing a new idea for shape finding and mechanism analysis of tensegrity structures based on component changes.
作者 刘贺平 黄文杰 宋健 赖潇亮 罗阿妮 LIU Heping;HUANG Wenjie;SONG Jian;LAI Xiaoliang;LUO Ani(College of Mechanical and Electrical Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第2期276-283,共8页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(51835002,51875111) 黑龙江省自然科学基金项目(LH2020E062)。
关键词 张拉整体结构 线性迭代法 找形 节点矩阵 连接矩阵 平衡矩阵 稳定性 奇异值分解 tensegrity structure linear iteration method form-finding nodal matrix connectivity matrix equilibrium matrix stability singular value decomposition
  • 相关文献

参考文献2

二级参考文献21

  • 1罗尧治,陆金钰.杆系结构可动性判定准则[J].工程力学,2006,23(11):70-75. 被引量:10
  • 2ZHANG J Y, GUEST S D, CONNELLY R, et al. Dihedral ' star' tensegfity structures [J]. International Journal of Solids and Structures, 2010, 47(1) : 1-9.
  • 3De OLIVEIRA M C, SKELTON R E. A new topology of tensegrity towers with uniform force distribution [C]// Proceedings of the society of photo-optical instrumentation engineers (SPIE). San Diego: SPIE, 2005: 198-208.
  • 4De OLIVEIRA M C, SKELTON R E, CHAN W L. Minimum mass design qff tensegrity towers and plates [C]// IEEE Conference on Decision and Control. New York: IEEE, 2006: 2314-2319.
  • 5MASIC M, SKELTON R E. Optimization of class- 2 tensegrity towers [C]//Proceedings of the society of photo- optical instrumentation engineers (SPIE). San Diego: SPIE, 2004: 163-174.
  • 6PELLEGRINO S, CALLADINE C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. International Journal of Solids and Structures, 1986, 22(4) : 409-428.
  • 7PELLEGRINO S. Analysis of prestressed mechanisms [J]. International Journal of Solids and Structures, 1990, 26(12) : 1329-1350.
  • 8PELLEGRINO S. Strnctural computations with the singular value decomposition of the equihbrium matrix [J]. International Journal of Solids and Structures, 1993, 30(21) : 3025-3035.
  • 9GUEST S D. The stiffness of prestressed frameworks: A unifying approach [J]. International Journal of Solids and Structures, 2006, 43 (3/4) : 842- 854.
  • 10GUEST S D. The stiffness of tensegrity structures [J]. IMA Journal of Applied Mathematics, 2011, 76(1SI) : 57-66.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部