期刊文献+

基于行人重识别(ReID)技术的乘客出行特征研究

Research on Passenger Travel Characteristics Based on Person Re-identification (ReID) Technology
下载PDF
导出
摘要 随着大数据时代的来临,海量的非结构化视频数据激增,传统的人工处理方法已经难以满足现有的数据处理需求。随着人工智能、神经网络等技术的发展和算力的提升,视频分析技术应运而生。行人重识别(ReID)算法是智能视频分析中的一项重要技术,标注人员首先对视频样本进行标注作业,然后将标注结果应用到算法模型中,可以快速从海量的监控视频中识别出不同摄像头网络中的同一个行人,最后通过自动检索目标,精确定位每一位乘客的运行轨迹,实现对客流的精确划分。 In recent years,with the development of technologies,such as artificial intelligence and neural networks,and the continuous improvement of computing power,the number of cameras has increased rapidly,which generating massive amounts of video data.The traditional manual processing and manual monitoring methods can no longer meet the needs of many data processing.Therefore,video analysis technology emerges as the times require.Due to the characteristics of closed underground,such as poor lighting,the large number of stairs,narrow space,and large passenger flow.The algorithm accuracy tends to drop significantly model algorithms once applied to the subway scene,although those algorithms can perform well in other fields.Person Re-Identification(ReID)algorithm is an important technology in intelligent video analysis.Annotators first perform labeling operations on video samples,and then apply the labeling results to the algorithm model.This technology can identify the same person in different camera networks,accurately locate the running trajectory of each passenger,track the passenger trajectory,and achieve accurate division of passenger flow from massive surveillance videos by automatically retrieving the query target.
作者 李心怡 石旭 李辉 姚世严 李天宇 郑剑飞 LI Xinyi;SHI Xu;LI Hui;YAO Shiyan;LI Tianyu;ZHENG Jianfei(Beijing Metro Network Control Center,Beijing 100101,China)
出处 《数字通信世界》 2023年第1期55-57,61,共4页 Digital Communication World
基金 北京市基础设施投资有限公司科研项目经费资助,项目编号:ZH-2020-3,项目名称:基于AI视频分析技术的地铁车站客流及乘客特征分析技术研究及应用。
关键词 视频分析 行人重识别 样本标注 乘客轨迹追踪 智慧地铁 video analysis person re-identification sample annotation trajectory tracking smart metro
  • 相关文献

参考文献3

二级参考文献296

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 3Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 4Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 5Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 6Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 7Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 8Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 9Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 10Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.

共引文献477

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部