期刊文献+

Accelerated identification of equilibrium structures of multicomponent inorganic crystals using machine learning potentials

原文传递
导出
摘要 The discovery of multicomponent inorganic compounds can provide direct solutions to scientific and engineering challenges,yet the vast uncharted material space dwarfs synthesis throughput.While the crystal structure prediction(CSP)may mitigate this frustration,the exponential complexity of CSP and expensive density functional theory(DFT)calculations prohibit material exploration at scale.Herein,we introduce SPINNER,a structure-prediction framework based on random and evolutionary searches.Harnessing speed and accuracy of neural network potentials(NNPs),the program navigates configurational spaces 10^(2)–10^(3) times faster than DFT-based methods.Furthermore,SPINNER incorporates algorithms tuned for NNPs,achieving performances exceeding conventional algorithms.In blind tests on 60 ternary compositions,SPINNER identifies experimental(or theoretically more stable)phases for~80%of materials.When benchmarked against data-mining or DFT-based evolutionary predictions,SPINNER identifies more stable phases in many cases.By developing a reliable and fast structure-prediction framework,this work paves the way to large-scale,open exploration of undiscovered inorganic crystals.
出处 《npj Computational Materials》 SCIE EI CSCD 2022年第1期1027-1036,共10页 计算材料学(英文)
基金 This work was supported by Korea Institute of Ceramic Engineering and Technology(KICET)(N0002599) Creative Materials Discovery Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2017M3D1A1040689) A part of the computations were carried out at the Korea Institute of Science and Technology Information(KISTI)supercomputing center(KSC-2020-CRE-0125)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部