期刊文献+

Machine-learning assisted design principle search for singlet fission:an example study of cibalackrot 被引量:1

原文传递
导出
摘要 This work uses quantum chemistry calculations and machine learning to explore design rules for singlet fission in a chemical space of four million indigoid derivatives.We identify~400,000 derivatives of 2,2′-diethenyl cibalackrot,which theoretically fulfil the energy conditions for exoergic singlet fission above the silicon band gap energy.Probing this database with a random forest classifier,we observe that small substituents with positive mesomeric effects and weak negative inductive effects reinforce the desired energetic conditions when placed at specific positions.Finally,a subset of molecules that reflects the random forest classifier’s rules are investigated for their quantum chemical properties to translate the desirable structural motifs into wavefunction-based design rules.Here,direct correlations between the energetic condition for singlet fission,the biradical character and the charge and triplet spin density in prominent molecular regions are identified,providing insights that may serve as a guide for singlet fission core structure development.
出处 《npj Computational Materials》 SCIE EI CSCD 2022年第1期1703-1716,共14页 计算材料学(英文)
基金 This project was funded by the Japan Society for the Promotion of Science(P20703)and through Kakenhi(20F20703).
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部