期刊文献+

Data-driven discovery of 2D materials by deep generative models 被引量:4

原文传递
导出
摘要 Efficient algorithms to generate candidate crystal structures with good stability properties can play a key role in data-driven materials discovery.Here,we show that a crystal diffusion variational autoencoder(CDVAE)is capable of generating two-dimensional(2D)materials of high chemical and structural diversity and formation energies mirroring the training structures.Specifically,we train the CDVAE on 26152D materials with energy above the convex hullΔH_(hull)<0.3 eV/atom,and generate 5003 materials that we relax using density functional theory(DFT).We also generate 14192 new crystals by systematic element substitution of the training structures.We find that the generative model and lattice decoration approach are complementary and yield materials with similar stability properties but very different crystal structures and chemical compositions.In total we find 11630 predicted new 2D materials,where 8599 of these haveΔH_(hull)<0.3 eV/atom as the seed structures,while 2004 are within 50 meV of the convex hull and could potentially be synthesised.The relaxed atomic structures of all the materials are available in the open Computational 2D Materials Database(C2DB).Our work establishes the CDVAE as an efficient and reliable crystal generation machine,and significantly expands the space of 2D materials.
出处 《npj Computational Materials》 SCIE EI CSCD 2022年第1期2218-2225,共8页 计算材料学(英文)
基金 We acknowledge funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme Grant No.773122(LIMA) Grant agreement No.951786(NOMAD CoE).K.S.T.is a Villum Investigator supported by VILLUM FONDEN(grant no.37789).
  • 相关文献

同被引文献77

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部